Skip Nav Destination
Close Modal
Search Results for
yield point
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 846 Search Results for
yield point
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 October 2011
Image
Published: 01 December 2004
Fig. 12 Stress-strain diagram showing yield point or yield strength by extension-under-load method. o-m , specified extension under load. Line m-n is vertical, and the intersection point, r , determines yield strength value, R. Source: Ref 3
More
Image
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Image
Published: 01 July 2009
Fig. 17.15 Yield point obtained in longitudinal tensile test of S-65C. Source: Goods and Dombrowski 1997
More
Image
Published: 01 July 2009
Fig. 17.17 Yield-point factor [(σ yp – σ pl )/σ pl ] as a function of temperature for S-65C beryllium. Source: Goods and Dombrowski 1997
More
Image
Published: 01 December 2004
Fig. 3 Typical yield-point behavior of low-carbon steel. The slope of the initial linear portion of the stress-strain curve, designated by E , is the modulus of elasticity.
More
Image
Published: 01 December 2004
Fig. 7 Examples of stress-strain curves exhibiting pronounced yield-point behavior. Pronounced yielding, of the type shown, is usually called yield-point elongation (YPE). (a) Classic example of upper-yield-strength (UYS) behavior typically observed in low-carbon steels with a very pronounced
More
Image
Published: 01 December 2004
Fig. 11 Stress-strain diagram showing yield point corresponding with top of knee. o-m , offset to yield point. Source: Ref 3
More
Image
Published: 01 April 2013
Fig. 2 Examples of stress-strain curves exhibiting pronounced yield point behavior. Pronounced yielding, of the type shown, is usually called yield point elongation (YPE). (a) Classic example of upper yield strength (UYS) behavior typically observed in low carbon steels with a very pronounced
More
Image
Published: 01 June 1983
Image
Published: 01 June 1983
Figure 7.14 Yield points in stress–strain curve: (a) upper yield stress; (b) lower yield stress.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
... of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780199
EISBN: 978-1-62708-281-5
... Abstract This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect...
Abstract
This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect that polymers often undergo at room temperature are also discussed.
Image
Published: 01 July 2009
Fig. 13.4 Effect of temperature on the yield stress of beryllium. Data points are for various polycrystalline materials; solid lines represent single-crystal performance. Source: Aldinger 1979
More
Image
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 2.9 Stress-strain curves for low-carbon steel showing strain aging. Region A , original material strained through yield point. Region B , immediately retested after reaching point X . Region C , reappearance and increase in yield point after aging at 150 °C (300 °F). Source: Ref 2.2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240041
EISBN: 978-1-62708-251-8
... in a uniform manner with the application of stress, is the most common form of curve. The curve on the right, which has a sharp yield point, is often observed in low-carbon steels. Yield-point reductions on the order of 30% are common. The stress initially rises in a uniform fashion until it reaches point...
Abstract
When a metal is alloyed with another metal, either substitutional or interstitial solid solutions are usually formed. This chapter discusses the general characteristics of these solutions and the effects of several alloying elements on the yield strength of pure metals. It presents four rules that give a qualitative estimate of the ability of two metals to form substitutional solid solutions: relative size factor, chemical affinity factor, relative valency factor, and lattice type factor. The chapter provides information on alloys that form an ordered structure during heating. It describes the intermediate phases that are formed during solidification between the two extremes of substitutional solid solution on the one hand and intermetallic compound on the other. The chapter concludes with a section on strain aging in low-carbon steels that allows the interstitial atoms to diffuse to the dislocations and again form atmospheres that pin dislocation movement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720117
EISBN: 978-1-62708-305-8
..., but measurable, amount of inelastic or plastic deformation occurs. Yield strength is usually defined as: Upper yield strength or upper yield point Offset yield strength Upper Yield Strength or Upper Yield Point An upper yield strength or upper yield point ( Fig. 2a ) usually occurs with low...
Abstract
This chapter is a detailed account of the tensile testing procedure used for evaluating metals and alloys. The discussion covers the stress-strain behavior of metals determined by tensile testing, properties determined from testing, test machines for measuring mechanical properties, and general procedures of tensile testing. Three distinct aspects of standard test methods for tension testing of metallic materials are discussed: test piece preparation, geometry, and material condition; test setup and equipment; and test procedure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.9781627083553
EISBN: 978-1-62708-355-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060195
EISBN: 978-1-62708-355-3
... located midway between the axis and outside surface of the fastener as shown in Fig. 9 . In either case, machined test specimens should exhibit tensile strength, yield strength (or yield point), elongation, and reduction of area equal to or greater than the values of these properties specified...
Abstract
This chapter focuses on tensile testing of three types of engineering components that undergo significant loading in tension, namely, threaded fasteners and bolted joints; adhesive joints; and welded joints. It describes the standardized tensile test for externally threaded fasteners and provides a brief background on relationships among torque, angle-of-turn, tension, and friction. The chapter also describes the test methods covered in the ASTM F 606M standard, namely, product hardness; proof load by length measurement, yield strength, or uniform hardness; axial tension testing of full-sized products; wedge tension testing of full-sized products; tension testing of machined test specimens; and total extension at fracture testing. Finally, the chapter covers tensile testing of adhesive and welded joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010001
EISBN: 978-1-62708-384-3
... as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how...
Abstract
Product design requires an understanding of the mechanical properties of materials, much of which is based on tensile testing. This chapter describes how tensile tests are conducted and how to extract useful information from measurement data. It begins with a review of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience.
1