Skip Nav Destination
Close Modal
Search Results for
wrought titanium alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 341 Search Results for
wrought titanium alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480001
EISBN: 978-1-62708-318-8
.... It then describes the physical and mechanical properties of pure titanium and numerous grades of wrought titanium alloys and explains how they compare with other aerospace materials in terms of processing complexity and cost. The chapter also includes information on extractive metallurgy, current and emerging...
Abstract
This chapter provides an overview of the production and use of titanium and its significance as an engineering material. It begins by identifying important deposits and ores and assessing current and future production capacities and how they align with global consumption trends. It then describes the physical and mechanical properties of pure titanium and numerous grades of wrought titanium alloys and explains how they compare with other aerospace materials in terms of processing complexity and cost. The chapter also includes information on extractive metallurgy, current and emerging processes, product forms, and related costs.
Image
in Relationships among Structures, Processing, and Properties
> Titanium<subtitle>A Technical Guide</subtitle>
Published: 01 December 2000
Fig. 12.37 Fracture toughness of cast and plate of Ti-6Al-4V alloy, with range of values for wrought titanium alloys shown
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120001
EISBN: 978-1-62708-269-3
.... (Investment cast titanium alloy structures have a lower cost than conventional forged/wrought fabricated titanium alloy structures.) Titanium may be processed by means of P/M technology. (Powder may cost more, yet P/M may offer property and processing improvements as well as an overall cost-savings...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120039
EISBN: 978-1-62708-269-3
.... Titanium is a challenge to cast because it is a highly reactive metal and can interact with the atmosphere and with conventional refractories used in molding processes. Cost factors associated with wrought alloy processing led to continual efforts to develop and improve casting methods for titanium and its...
Abstract
Titanium castings are used in a wide range of aerospace, chemical process, marine, biomedical, and automotive applications. This chapter provides an overview of titanium casting and associated processes and how they compare with other manufacturing methods. It also discusses the role heat treating and its effect on the tensile properties of different titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120047
EISBN: 978-1-62708-269-3
... Abstract This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several...
Abstract
This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several consolidation and shaping processes along with associated property data.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120095
EISBN: 978-1-62708-269-3
... on tensile and yield strength, fracture toughness, hardness, ductility, and creep and fatigue behaviors. The chapter covers wrought, cast, and powder metal titanium alloys and contains an extensive amount of property data. aging alloy composition cast titanium alloys creep properties fatigue...
Abstract
This chapter examines the process, structure, and property relationships in titanium alloys. It provides information on microstructures and strengthening mechanisms, the role of alloy and interstitial elements, and the effect of composition, processing, and surface treatments on tensile and yield strength, fracture toughness, hardness, ductility, and creep and fatigue behaviors. The chapter covers wrought, cast, and powder metal titanium alloys and contains an extensive amount of property data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120005
EISBN: 978-1-62708-269-3
... susceptibility (volume, at room temperature) 180 (±1.7) × 10 –6 mks Titanium and titanium alloys are produced in a wide variety of product forms, with some examples shown in Fig. 2.1 . Titanium can be wrought, cast, or made by P/M techniques. It may be joined by means of fusion welding, brazing...
Abstract
Titanium is a lightweight metal with a density approximately 60% that of steel and, through alloying and deformation processing, it can be just as strong. It is readily available in many grades and forms and can be further processed using standard methods and techniques. This chapter provides a concise review of the capabilities of titanium and its design advantages over other materials. It includes information on properties and selection factors as well as applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040257
EISBN: 978-1-62708-300-3
... strain rates used in hot-die forging, P/M superalloys are usually not forged by this process. On the other hand, titanium alloys and cast and wrought superalloys are often forged by hot-die forging processes. Since hot-die forging is not performed in a vacuum/inert environment, fast post-forging...
Abstract
This chapter discusses the processes of isothermal and hot-die forging and their use in producing aerospace components. It explains how isothermal forging was developed to provide a near-net shape component geometry and well-controlled microstructures and properties with accurate control of the working temperature and strain rate. It describes the materials typically used as well as equipment and tooling, die heating procedures, part separation techniques, and postforging heat treatment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240527
EISBN: 978-1-62708-251-8
..., extrusions, wire, and tubing; however, not all alloys are available in all product forms. The wrought product forms of titanium and titanium alloys, which include forgings and the typical mill products, constitute more than 70 wt% of the market in titanium and titanium alloy production. Generally...
Abstract
Titanium alloys are classified according to the amount of alpha and beta phase material retained in their structures at room temperature. This chapter discusses the metallurgy, composition, processing, and properties of titanium and its alloys. It provides information on melting, forging, casting, heat treating, and secondary fabrication. It also discusses the advantages and disadvantages of titanium and its alloys in various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
... 102 Tungsten 1517 220 . . . . . . Molybdenum and its alloys 1448 210 565 82 Titanium and its alloys 1317 191 186 27 Carbon steels, wrought; normalized, quenched and tempered 1296 188 400 58 Low-alloy carburizing steels; wrought, quenched and tempered 1227 178 427 62...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... class of nickel-base superalloys is that strengthened by intermetallic compound precipitation in an austenitic fcc matrix. For alloys with titanium and aluminum, the strengthening precipitate is γ′. Such alloys are typified by the wrought alloys Waspaloy, Astroloy, U-700, and U-720, or the cast alloys...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
..., zirconium, titanium, or hafnium. Haynes 25 is the best known of the wrought alloys and has been widely used for hot sections of gas turbines, components for nuclear reactors, devices for surgical implants, and for cold-worked fasteners and wear pads. Haynes 188 is an alloy that was specially designed...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating, and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... copper nickel 18 10 Pure Tellurium (Te) 18–20 9.9–11 Silver alloys 19 11 Pure Silver (Ag) 17–21 9.4–12 Wrought brass 16–23 8.9–13 3xx.x series cast aluminum silicon + copper or magnesium 16–24 8.9–13 2xxx series wrought aluminum copper 16–24 8.9–13 Zinc copper titanium...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550223
EISBN: 978-1-62708-307-2
.... It also compares and contrasts the properties of wrought, cast, and powder metal titanium products and discusses corrosion behaviors. corrosion resistance forgeability forming heat treatability machinability titanium alloys titanium castings weldability TITANIUM is a lightweight metal...
Abstract
Titanium is a lightweight metal used in a growing number of applications for its strength, toughness, stiffness, corrosion resistance, biocompatibility, and high-temperature operating characteristics. This chapter discusses the applications, metallurgy, properties, compositions, and grades of commercially pure titanium and alpha and near-alpha, alpha-beta, and beta titanium alloys. It describes primary and secondary fabrication processes, including melting, forging, forming, heat treating, casting, machining, and joining as well as powder metallurgy and direct metal deposition. It also compares and contrasts the properties of wrought, cast, and powder metal titanium products and discusses corrosion behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170290
EISBN: 978-1-62708-297-6
... of nickel-base superalloys is that strengthened by intermetallic-compound precipitation in an fcc matrix. For nickel-titanium/aluminum alloys, the strengthening precipitate is γ′. Such alloys are typified by the wrought alloys Waspaloy and Udimet (U) 720, or by the cast alloys René 80 and IN 713. For nickel...
Abstract
This article discusses the composition, structure, and properties of iron-nickel-, nickel-, and cobalt-base superalloys and the effect of major alloying and trace elements. It describes the primary and secondary roles of each alloying element, the amounts typically used, and the corresponding effect on properties and microstructure. It also covers mechanical alloying and weldability and includes nominal composition data on many wrought and cast superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000009
EISBN: 978-1-62708-313-3
... requires combined aluminum and titanium contents of at least four to six weight percent. This precipitate is the main strengthening phase in such wrought alloys as Waspaloy, Astroloy, Udimet alloys 700 and 720 and in such cast alloys as Rene 80, MAR-M 247, and Inconel 713 and in all of the directionally...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
... Abstract Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc...
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170520
EISBN: 978-1-62708-297-6
... a reasonable level of solubility in zinc, silver and gold are too costly, while cadmium, mercury, and as little as 0.08% Mg lead to hot shortness. Aluminum and copper, with minute amounts of magnesium (<0.08 and more recently titanium, are mainly added to casting and wrought zinc alloys. The principal role...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
... nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics. heat treatment aluminum alloys cobalt alloys copper alloys magnesium alloys nickel...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... Abstract This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
1