Skip Nav Destination
Close Modal
Search Results for
wrought silicon bronze
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 83 Search Results for
wrought silicon bronze
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... contain phosphorus, the aluminum bronzes contain aluminum, the silicon bronzes contain silicon, and the copper-nickels (cupronickels) and nickel silvers contain nickel. Classification of copper alloys Table 25.2 Classification of copper alloys Alloy UNS No. Composition Wrought alloys...
Abstract
Copper is often used in the unalloyed form because pure copper is more conductive than copper alloys. Alloying elements are added to optimize strength, ductility, and thermal stability, with little negative effect on other properties such as conductivity, fabricability, and corrosion resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper production process and concludes with a discussion on corrosion resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
..., silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060073
EISBN: 978-1-62708-261-7
... and their alloys Near East 2400–2200 B.C. Copper statue of Pharaoh Pepi I Egypt 2000 B.C. Bronze Age Far East 1500 B.C. Iron Age (wrought iron) Near East 700–600 B.C. Etruscan dust granulation Italy 600 B.C. Cast iron China 224 B.C. Colossus of Rhodes destroyed Greece 200–300 A.D...
Abstract
The discovery and use of materials have shaped civilization since ancient times. This chapter traces the history of the use of metals from hammered copper estimated to be 11,000 years old to the development of electrolytically refined aluminum in 1884. The discussion covers the advent of the Bronze Age, extraction of metals from their respective ores, and the discovery of modern metals such as chromium, vanadium, platinum, and titanium.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... of other elements. Copper alloys alloyed with tin are called bronzes; however, it is current practice in metallurgy to also call copper alloyed with silicon, aluminum, and other elements bronzes . Copper was one of the first metals used by early people. They learned that alloying with tin produced a metal...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
...-phase casting alloys. Non-heat-treatable 6 xxx Magnesium and silicon Heat treatable with strengthening from Mg 2 Si 6 xx.x Unused series The 3 xx.x and 4 xx.x cast series are the counterpart of wrought 6 xxx series. 7 xxx Zinc/magnesium Heat treatable with strengthening from MgZn 2...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... (a) Although many wrought 4 xxx alloys are solid-solution (aluminum-silicon) alloys, some 4 xxx alloys (e.g., 4032 and 4643) have magnesium additions that make the alloys heat treatable with strengthening from Mg 2 Si. The non-heat-treatable aluminum alloys include pure aluminum, aluminum-manganese...
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
...) 105–125 61–72 Zinc aluminum 116 67 Pure Ruhenium (Ru) 88–146 51–85 (5xx.x series) Cast aluminum magnesium 125–126 72–73 Pure Calcium (Ca) 26–230 15–133 Wrought bronze 100–159 58–92 (7xx.x series) Cast aluminum zinc 92–168 53–97 (3xx.x series) Cast aluminum silicon plus...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
... 124 18.0 124 18.0 Palladium 124 18.0 . . . . . . Brasses; wrought 124 18.0 103 15.0 Bronzes; wrought 120 17.5 110 16.0 Polycrystalline glass 119 17.3 86 12.5 Niobium and its alloys 110 16.0 79 11.5 Silicon 107 15.5 . . . . . . Zirconium and its alloys...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... subsequent mechanical reduction operations. Alloys processed in this manner are known as wrought products , while those that are formed into usable shapes by casting only are called cast products . Wrought alloys are by definition intended to be mechanically worked after casting by some reduction method...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.9781627082846
EISBN: 978-1-62708-284-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
..., T, I, P, S Silicon bronzes C87400 83Cu, 14Zn, 3Si 379 55 165 24 30 70 100 50 C, D, I, M, P, S C87500 82Cu, 14Zn, 4Si 462 67 207 30 21 115 134 50 C, D, I, M, P, S Tin bronzes C90700 89Cu, 11Sn 303 44 152 22 20 80 ... 20 C, T, I, M, S (379) (55) (207...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870025
EISBN: 978-1-62708-299-0
... Manganese bronze Naval brass Nickel (active) 76Ni-1 6Cr-7Fe alloy (active) 60Ni-30Mo-6Fe-1Mn Yellow brass Admirality brass Aluminum brass Red brass Copper Silicon bronze 70:30 Cupro Nickel G-bronze M-bronze Silver solder Nickel (passive) 76Ni-16Cr-7Fe alloy...
Abstract
Aluminum generally has excellent resistance to corrosion and gives years of maintenance-free service in natural atmospheres, fresh waters, seawater, many soils and chemicals, and most foods. This chapter explains why aluminum and aluminum alloys are naturally resistant to corrosion and describes the conditions and circumstances under which their natural defenses break down. It discusses the causes and forms of corrosion observed in aluminum alloys and the effect of composition, microstructure, processing history, and environmental variables such as impurities, fluid flow, surface area, pressure, and temperature.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
...-base alloys containing no tin, such as aluminum bronze (copper-aluminum), silicon bronze (copper-silicon), and beryllium bronze (copper-beryllium). Brasses are copper-zinc alloys, which are probably the most widely used class of copper-base alloys. Most brasses are copper-zinc solid-solution alloys...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900001
EISBN: 978-1-62708-358-4
... be traced to the Egyptians of 5000 to 6000 years ago, and numerous biblical references confirm this time period for the beginning use of iron ( Ref 6 , 7 ). Widespread replacement of bronze by iron occurred at about 1200 B.C. , perhaps because of natural and economic disasters that interrupted the flow...
Abstract
Tool steels are the ferrous alloys used to manufacture tools, dies, and molds that shape, form, and cut other materials, including steels, nonferrous metals, and plastics. This chapter explores the considerations that make tool steels a very special class of steels, the long historical evolution of iron and steel manufacture, including steels for tools, and the development of tool steels as they emerged from the general class of iron and steel products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030019
EISBN: 978-1-62708-282-2
... (silicon bronze) Copper alloy C71500 (copper nickel, 30% Ni) Copper alloy C92300, cast (leaded tin bronze G) Copper alloy C92200, cast (leaded tin bronze M) Nickel 200 (passive) Inconel alloy 600 (passive) Monel alloy 400 Type 410 stainless steel (passive) Type 304 stainless steel...
Abstract
This chapter provides a brief account of galvanic corrosion, which occurs when a metal or alloy is electrically coupled to another metal or conducting nonmetal in the same electrolyte. It begins by describing the galvanic series of metals and alloys useful for predicting galvanic relationships, followed by a brief section on polarization of metals or alloys. The effects of area, distance, and geometric shapes on galvanic-corrosion behavior are then discussed. Various alloys susceptible to galvanic corrosion are briefly reviewed. The chapter also discusses various modes of attack that lead to galvanic corrosion, along with methods for predicting and controlling galvanic corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140007
EISBN: 978-1-62708-335-5
... silicon in excess of that of most wrought alloys. Solidification results in shaped casting are improved by fluidity, elevated-temperature resistance to cracking, and feeding characteristics that sufficient amounts of silicon impart. The optimal concentration of silicon depends in part on the casting...
Abstract
Aluminum casting alloy compositions parallel those of wrought alloys in many respects. However, because work hardening plays no significant role in the development of casting properties, the use and purposes of some alloying elements differ in casting alloys versus wrought alloys. This chapter provides information on specifications and widely used designation systems and alloy nomenclature for aluminum casting alloys. It describes the composition of seven basic families of aluminum casting alloys: aluminum-copper, aluminum-silicon-copper, aluminum-silicon, aluminum-silicon-magnesium, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The chapter discusses the effects of alloying elements on the properties of cast aluminum. It provides information on various alloys that are grouped with respect to their applications or major performance characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410009
EISBN: 978-1-62708-265-5
..., strong combination of iron and carbon, as noted in Chapter 1, “Introduction: Purpose of Text, Microstructure and Analysis, Steel Definitions and Specifications,” started to replace bronze, the first technologically important metal, around 1200 B.C. ( Ref 2.1 , 2.2 ). Although iron was known and used...
Abstract
This chapter traces the history of steelmaking over three millennia, from the discovery of martensite in a mining tool dating from the twelfth century B.C. to the nineteenth century development of the Bessemer and Siemens processes. It also describes the work of early metallographers who discovered many phases and microstructures associated with steel and gave them their now familiar names. The chapter concludes with a brief discussion on the emergence of continuous casting and the subsequent development of strip casting production techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... iron) Unalloyed Gray, Ductile, Malleable, and White Cast Irons Unalloyed gray, ductile, malleable, and white cast irons represent the largest category. All of these materials have carbon and silicon contents of 3% or less and no deliberate additions of nickel, chromium, copper, or molybdenum...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730001
EISBN: 978-1-62708-283-9
... chloride and includes a list of structurally similar compounds. amorphous materials chemical bonding chemical elements crystal structures MATERIALS are so important to civilization that the terms stone age, bronze age , and iron age have been used to describe periods of history. Perhaps...
Abstract
This chapter discusses the foundational principles of materials science. It begins with a review of the periodic table and the fundamental particles, including atoms, ions, and molecules, that constitute matter. It also reviews the types of bonds that form between atoms and the relative levels of force they produce. It describes the difference between crystalline and noncrystalline or amorphous materials and discusses common crystal structures, including face-centered cubic, body-centered cubic, hexagonal close packed, and diamond cubic. It also describes the structure of sodium chloride and includes a list of structurally similar compounds.
1