Skip Nav Destination
Close Modal
Search Results for
wrought copper alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 350 Search Results for
wrought copper alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2001
Fig. 10 Tensile properties of high-purity, wrought aluminum-copper alloys. Sheet specimen was 13 mm (0.5 in.) wide and 1.59 mm (0.0625 in.) thick. O, annealed; W, tested immediately after water quenching from a solution heat treatment; T4, as in W, but aged at room temperature; T6, as in T4
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper...
Abstract
Copper is often used in the unalloyed form because pure copper is more conductive than copper alloys. Alloying elements are added to optimize strength, ductility, and thermal stability, with little negative effect on other properties such as conductivity, fabricability, and corrosion resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper production process and concludes with a discussion on corrosion resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
... Abstract This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... occur with some ternary compositions. In the 4 xxx wrought series, for example, several alloys (e.g., 4032 and 4643) contain some silicon and are heat treatable. The elements most commonly present in commercial aluminum alloys for strengthening are copper, magnesium, manganese, silicon, and zinc...
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
... of copper and nickel for strengthening). Used for cast bearings; tin imparts excellent lubricity The non-heat-treatable aluminum alloys ( Table 14.4 ) include: Pure aluminum (1000 wrought and 100.0 cast series) Aluminum-manganese alloys (3000 wrought series) Aluminum-silicon binary...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
... 40 Copper casting alloys( a ) 965 140 62 9 Stainless steels, standard austenitic grades; wrought, cold worked 965 140 517 75 Niobium and its alloys 931 135 241 35 Iron-base superalloys; cast, wrought 924 134 276 40 Cobalt-base superalloys, wrought 800 116 241 35...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... iron 12–19 6.7–10 Austenitic cast iron with graphite 8.8–22 4.9–12 Pure Thulium (Tm) 14–18 7.5–9.8 Wrought copper nickel 13–19 7.0–10 Ductile high-nickel cast iron 4.5–27 2.5–15 Pure Lanthanum (La) 16–18 8.8–10 Wrought high copper alloys 17 9.4 Cast high copper alloys...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340035
EISBN: 978-1-62708-427-7
... and the 7 xx . x cast alloys Al-(Cu)-Li alloys in the miscellaneous (8 xxx ) wrought series and some copper-containing alloys among the Al-Sn (8 xx . x ) cast alloys As noted previously, there may be some exceptions when some alloys in the Al-Si cast (4 xx . x ) and wrought (4 xxx ) series...
Abstract
This chapter provides an overview of the alloy and temper designations adopted for aluminum cast and wrought products. It explains the naming system and how to identify the main alloying elements and basic strengthening mechanism from any given alloy and temper designation. The chapter provides additional detail on the strengthening and softening mechanisms that allow aluminum alloys to attain a range of engineering properties. The strength of aluminum alloys can be controlled by three methods: solid-solution hardening by alloying, work hardening by plastic deformation, and precipitation hardening with appropriate alloying and heat treatment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170351
EISBN: 978-1-62708-297-6
... Abstract This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification...
Abstract
This article discusses the composition, structures, properties, and behaviors of aluminum alloys and explains how they correspond to specific alloying elements. It begins with an overview of the general characteristics of wrought and cast aluminum alloys, the four-digit classification system by which they are defined, and the applications for which they are suited. It then explains how primary alloying elements, second-phase constituents, and impurities affect yield strength, phase formation, and grain size and how they induce structural changes that help refine certain alloys. The article also explains how primary alloying elements affect corrosion and wear behaviors and how they influence fabrication processes such as forming, forging, welding, brazing, and soldering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170520
EISBN: 978-1-62708-297-6
... of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. In the corrosion-protection category, hot dip or continuous galvanizing accounts for the majority of zinc consumption (Hot dip zinc and zinc...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060073
EISBN: 978-1-62708-261-7
... and their alloys Near East 2400–2200 B.C. Copper statue of Pharaoh Pepi I Egypt 2000 B.C. Bronze Age Far East 1500 B.C. Iron Age (wrought iron) Near East 700–600 B.C. Etruscan dust granulation Italy 600 B.C. Cast iron China 224 B.C. Colossus of Rhodes destroyed Greece 200–300 A.D...
Abstract
The discovery and use of materials have shaped civilization since ancient times. This chapter traces the history of the use of metals from hammered copper estimated to be 11,000 years old to the development of electrolytically refined aluminum in 1884. The discussion covers the advent of the Bronze Age, extraction of metals from their respective ores, and the discovery of modern metals such as chromium, vanadium, platinum, and titanium.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200295
EISBN: 978-1-62708-354-6
... 1.00 ... 95.0 min ... 1.25 3.0 Weight percent maximums unless otherwise noted Alloy Compositions Most cast nickel alloys followed the development of a similar wrought alloy. Castings are often discussed and even ordered using the trademark names of wrought alloys. The ASTM-A494...
Abstract
Nickel-base castings are produced from a group of alloys with compositions that are typically greater than 50% Ni and less than 10% iron. This chapter presents the casting compositions of nickel-base alloys. It then provides an overview of heat treatment, mechanical properties, and applications of nickel-base castings.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820125
EISBN: 978-1-62708-339-3
...-Fe-Cr) As shown in Fig. 1 , alloying of nickel with other elements (e.g., chromium, molybdenum, and copper) broadens its use in corrosion-resistant applications. Fig. 1 Compositional and property linkages for nickel-base alloys Many of the current wrought alloys are descended...
Abstract
Nickel-base alloys used for low-temperature aqueous corrosion are commonly referred to as corrosion-resistant alloys (CRAs), and nickel alloys used for high-temperature applications are known as heat-resistant alloys, high-temperature alloys, or superalloys. The emphasis in this chapter is on the CRAs and in particular nickel-chromium-molybdenum alloys. The chapter provides a basic understanding of general welding considerations and describes the welding metallurgy of molybdenum-containing CRAs and of nickel-copper, nickel-chromium, and nickel-chromium-iron CRAs. It discusses the corrosion behavior of nickel-molybdenum alloys and nickel-chromium-molybdenum alloys. Information on the phase stability and corrosion behavior of nickel-base alloys is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870025
EISBN: 978-1-62708-299-0
... 2 xxx wrought alloys and 2 xx.x casting alloys, in which copper is the major alloying element, are less resistant to corrosion than alloys of other series, which contain much lower amounts of copper. Alloys of this type were the first heat treatable high-strength aluminum-base materials, dating...
Abstract
Aluminum generally has excellent resistance to corrosion and gives years of maintenance-free service in natural atmospheres, fresh waters, seawater, many soils and chemicals, and most foods. This chapter explains why aluminum and aluminum alloys are naturally resistant to corrosion and describes the conditions and circumstances under which their natural defenses break down. It discusses the causes and forms of corrosion observed in aluminum alloys and the effect of composition, microstructure, processing history, and environmental variables such as impurities, fluid flow, surface area, pressure, and temperature.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.9781627082846
EISBN: 978-1-62708-284-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240487
EISBN: 978-1-62708-251-8
... weight and cost basis, aluminum is a better electrical conductor than copper. Its high thermal conductivity leads to applications such as radiators and cooking utensils. Its low density is important for hand tools and all forms of transportation, especially aircraft. Wrought aluminum alloys display...
Abstract
Aluminum has many outstanding properties, leading it to be used for a wide range of applications. It offers excellent strength-to-weight ratio, good corrosion and oxidation resistance, high electrical and thermal conductivity, exceptional formability, and relatively low cost. This chapter examines the metallurgy, composition, processing, and mechanical properties of aluminum and its alloys, both cast and wrought forms. It also covers heat treating and basic temper designations, including annealed, work hardened, solution heat treated, and solution heated treated and aged. The chapter concludes with information on corrosion and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
... Abstract Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... the highest stiffness. As previously mentioned, beryllium coppers can be heat treated (age hardened) to hardnesses of up to 44 HRC, and some aluminum bronzes can reach hardnesses approaching 40 HRC, but all of the other alloys do not have hardnesses above about 20 HRC. Most wrought alloys can be cold worked...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240547
EISBN: 978-1-62708-251-8
... nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel...
Abstract
Nickel and nickel alloys have an excellent combination of corrosion, oxidation, and heat resistance, combined with good mechanical properties. Nickel alloys can be divided into alloys that combine corrosion and heat resistance, superalloys for high-temperature applications, and special nickel alloys. Corrosion- and heat-resistant nickel alloys include commercially pure and low-alloy nickels, nickel-copper alloys, nickel-molybdenum and nickel-silicon alloys, nickel-chromium-iron alloys, nickel-chromium-molybdenum alloys, and nickel-chromium-iron-molybdenum-copper alloys. Special nickel alloys include electrical-resistance alloys, low-expansion alloys, magnetically soft alloys, and shape memory alloys. This chapter discusses the metallurgy, nominal composition, properties, applications, advantages, and disadvantages of these alloys. It also provides information on cobalt wear-resistant alloys and cobalt corrosion-resistant alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340179
EISBN: 978-1-62708-427-7
... ( Fig. 9.1 ), where all the pieces are not the same size, but all have to be represented in the final product. Fig. 9.1 Product attributes important to the materials and alloy/temper selection process In the selection process, the first major consideration is cast versus wrought...
Abstract
This chapter describes the attributes of aluminum products that are critical for key structural applications. It covers the selection criteria and evaluations performed by the aluminum supplier or customer: physical attributes, mechanical properties (tensile, fracture, and fatigue), and corrosion.
1