Skip Nav Destination
Close Modal
Search Results for
wrought aluminum bronze
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 107 Search Results for
wrought aluminum bronze
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240469
EISBN: 978-1-62708-251-8
... contain phosphorus, the aluminum bronzes contain aluminum, the silicon bronzes contain silicon, and the copper-nickels (cupronickels) and nickel silvers contain nickel. Classification of copper alloys Table 25.2 Classification of copper alloys Alloy UNS No. Composition Wrought alloys...
Abstract
Copper is often used in the unalloyed form because pure copper is more conductive than copper alloys. Alloying elements are added to optimize strength, ductility, and thermal stability, with little negative effect on other properties such as conductivity, fabricability, and corrosion resistance. This chapter covers the classification, composition, properties, and applications of copper alloys, including brasses, bronzes, copper-nickel, beryllium-copper, and casting alloys. It also examines wrought copper alloys and pure coppers. The chapter begins with an overview of the copper production process and concludes with a discussion on corrosion resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060073
EISBN: 978-1-62708-261-7
... of commercially pure aluminum (99+% pure) at 500× magnification ( Fig. 4.7 ). The dark particles in the micrograph are concentrations of impurity compounds, in this case Al 2 O 3 . These impurity concentrations or particles are similar to the inclusions or stringers in wrought iron. Fig. 4.7 Micrograph...
Abstract
The discovery and use of materials have shaped civilization since ancient times. This chapter traces the history of the use of metals from hammered copper estimated to be 11,000 years old to the development of electrolytically refined aluminum in 1884. The discussion covers the advent of the Bronze Age, extraction of metals from their respective ores, and the discovery of modern metals such as chromium, vanadium, platinum, and titanium.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170457
EISBN: 978-1-62708-297-6
... Abstract This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum...
Abstract
This article discusses the composition, properties, and behaviors of copper and its alloys. It begins with an overview of the characteristics, applications, and commercial grades of wrought and cast copper. It then discusses the role of alloying, explaining how zinc, tin, aluminum, silicon, and nickel affect the physical and mechanical properties of coppers and high-copper alloys as well as brasses, bronzes, copper-nickels, and nickel silvers. It also explains how alloying affects electrical conductivity, corrosion resistance, stress-corrosion cracking, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300163
EISBN: 978-1-62708-323-2
... the highest stiffness. As previously mentioned, beryllium coppers can be heat treated (age hardened) to hardnesses of up to 44 HRC, and some aluminum bronzes can reach hardnesses approaching 40 HRC, but all of the other alloys do not have hardnesses above about 20 HRC. Most wrought alloys can be cold worked...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... through heat treatment include: Solution-treated and aged aluminum alloys (e.g., aluminum-copper alloys) Solution-treated and aged cobalt alloys Solution-treated copper alloys (such as beryllium bronze, spinodal-hardening alloys, and order-hardening alloys) Quench-hardened (martensitic...
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
... bronze, spinodal-hardening alloys, and order-hardening alloys) Quench-hardened (martensitic) copper alloys (such as aluminum bronze, nickel-aluminum bronzes, and some copper-zinc alloys) Solution-treated and aged magnesium alloys Solution-treated and aged nickel alloys Solution-treated...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
..., cast 689 100 517 75 Heat treated carbon constructional steels; wrought, mill heat treated 690 100 290 42 Hafnium 662 96 221 32 Brasses, wrought( a ) 638 92.5 69 10 Aluminum alloys, 7000 series 627 91 97 14 Alloy steels, cast; normalized and tempered 627 91 262 38...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
...) 105–125 61–72 Zinc aluminum 116 67 Pure Ruhenium (Ru) 88–146 51–85 (5xx.x series) Cast aluminum magnesium 125–126 72–73 Pure Calcium (Ca) 26–230 15–133 Wrought bronze 100–159 58–92 (7xx.x series) Cast aluminum zinc 92–168 53–97 (3xx.x series) Cast aluminum silicon plus...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
... been used for gears, by far the most commonly employed are copper-base alloys. Die cast aluminum-, zinc-, and magnesium-base alloys are also sometimes used. More recently titanium alloy Ti-6Al-4V has been used in some specialized applications. Wrought Gear Steels Wrought steel is the generic...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... the course of literally thousands of years, but the process of continuous casting is a modern method that is effectively used by production mills to produce carbon and stainless steel, aluminum, copper, and certain other alloys. Today, a significant percentage of worldwide steel production is performed...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.9781627082846
EISBN: 978-1-62708-284-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870025
EISBN: 978-1-62708-299-0
... liter of distilled or deionized water. Table 5 provides a listing of solution potentials of aluminum alloys and of several other metals and alloys determined using ASTM G 69 test procedures. Solution potentials of non-heat-treatable commercial wrought aluminum alloys Table 2 Solution potentials...
Abstract
Aluminum generally has excellent resistance to corrosion and gives years of maintenance-free service in natural atmospheres, fresh waters, seawater, many soils and chemicals, and most foods. This chapter explains why aluminum and aluminum alloys are naturally resistant to corrosion and describes the conditions and circumstances under which their natural defenses break down. It discusses the causes and forms of corrosion observed in aluminum alloys and the effect of composition, microstructure, processing history, and environmental variables such as impurities, fluid flow, surface area, pressure, and temperature.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030019
EISBN: 978-1-62708-282-2
... Galvanized steel or galvanized wrought iron Aluminum alloys 5052, 3004, 3003, 1100, 6053, in this order Cadmium Aluminum alloys 2117, 2017, 2024, in this order Low-carbon steel Wrought iron Cast iron Ni-Resist (high-nickel cast iron) Type 410 stainless steel (active) 50-50...
Abstract
This chapter provides a brief account of galvanic corrosion, which occurs when a metal or alloy is electrically coupled to another metal or conducting nonmetal in the same electrolyte. It begins by describing the galvanic series of metals and alloys useful for predicting galvanic relationships, followed by a brief section on polarization of metals or alloys. The effects of area, distance, and geometric shapes on galvanic-corrosion behavior are then discussed. Various alloys susceptible to galvanic corrosion are briefly reviewed. The chapter also discusses various modes of attack that lead to galvanic corrosion, along with methods for predicting and controlling galvanic corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440231
EISBN: 978-1-62708-262-4
... in aircraft structures Copper-base alloys Beryllium bronze (beryllium copper) 1.9 Be, 0.2 Co or Ni Surgical instruments, electrical contacts, nonsparking tools, springs, nuts, gears, and other heavy duty applications Aluminum bronze 10 Al, 1 Fe Applications requiring resistance to corrosion...
Abstract
This chapter presents an overview of heat treating of nonferrous alloys. First, a brief discussion on the effects of cold work and annealing on nonferrous alloys is presented. This is followed by a discussion on the mechanisms involved in the more commonly used heat treating procedures for hardening or strengthening, namely solution treating and aging. Examples are presented for heat treating of two commercially important nonferrous alloys, one from the aluminum-copper system and one from the copper-beryllium system.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060315
EISBN: 978-1-62708-261-7
...-base alloys containing no tin, such as aluminum bronze (copper-aluminum), silicon bronze (copper-silicon), and beryllium bronze (copper-beryllium). Brasses are copper-zinc alloys, which are probably the most widely used class of copper-base alloys. Most brasses are copper-zinc solid-solution alloys...
Abstract
Nonferrous metals are of commercial interest both as engineering materials and as alloying agents. This chapter addresses both roles, discussing the properties, processing characteristics, and applications of several categories of nonferrous metals, including light metals, corrosion-resistance alloys, superalloys, refractory metals, low-melting-point metals, reactive metals, precious metals, rare earth metals, and metalloids or semimetals. It also provides a brief summary on special-purpose materials, including uranium, vanadium, magnetic alloys, and thermocouple materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980195
EISBN: 978-1-62708-342-3
... products ferrous alloys hot extrusion lead-base soft solders nonferrous alloys powder metals tin-base soft solders wrought aluminum alloys THE HOT-WORKING PROCESS extrusion is, in contrast to other compressive deformation processes used to produce semifinished products, a deformation process...
Abstract
Compared with other deformation processes used to produce semifinished products, the hot-working extrusion process has the advantage of applying pure compressive forces in all three force directions, enhancing workability. The available variations in the extrusion process enable a wide spectrum of materials to be extruded. This chapter focuses on the processes involved in the extrusion of semifinished products in various metals and their alloys, namely tin, lead, lead-base soft solders, tin-base soft solders, zinc, magnesium, aluminum, copper, titanium, zirconium, iron, nickel, and powder metals. It discusses their properties and applications as well as suitable equipment for extrusion. It further discusses the processes involved in the extrusion of semifinished products in exotic alloys and extrusion of semifinished products from metallic composite materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390001
EISBN: 978-1-62708-459-8
... century B.C . Iron became the dominant material for weapons, tools, and agricultural implements from 800 B.C . on, replacing the cast and also wrought bronze that dominated earlier centuries. This marks the ascendancy of the blacksmith, with his Greek god Hephaistos. The cold forming of metals...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200048
EISBN: 978-1-62708-354-6
... one-third that of steel ( Figure 3-24 ), which gives steel castings greater stiffness. Cast aluminum alloys have a good combination of electrical and thermal properties. The surface can be easily finished and takes well to various coatings. Fig. 3-24 Comparison of Young’s modulus for wrought...
Abstract
Casting is one of the basic processes used for the shaping of steel. It is economical in both cost and time of production. Numerous components are produced from cast steel because of the advantages of the process. These advantages can best be described under the following headings: design flexibility, metallurgical versatility and quality, and economic benefits. This chapter looks at these advantages of steel castings. Of major interest is the comparison of cast steel with wrought steel and weldments in terms of properties, availability, cost, and quality. The chapter also includes information on cast steel compared to other cast metals and other methods of steel fabrication.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
1