Skip Nav Destination
Close Modal
Search Results for
worm gears
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37 Search Results for
worm gears
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 September 2005
Image
Published: 01 September 2005
Image
in Sources of Failures in Carburized and Carbonitrided Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Image
Published: 01 September 2005
Fig. 52 Overload failure of a bronze worm gear (example 4). (a) An opened crack is shown with a repair weld, a remaining casting flaw, and cracking in the base metal. (b) Electron image of decohesive rupture in the fine-grain weld metal. Scanning electron micrograph. Original magnification
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250001
EISBN: 978-1-62708-345-4
... including prehardening processes, through hardening, and case hardening processes. bevel gears face gears gear design heat treating helical gears herringbone gears hypoid gears internal gears spiroid gears spur gears worm gears GEARS are machine elements that transmit rotary motion...
Abstract
This chapter begins with a review of some of the terms used in the gear industry to describe the design of gears and gear geometries. It then discusses the types of gears that operate on parallel shafts, intersecting shafts, and nonparallel and nonintersecting shafts. Next, the processes involved in the selection of gear are discussed, followed by information on the basic stresses applied to a gear tooth, the strength of a gear tooth, and the most widely used gear materials. Further, the chapter briefly reviews gear manufacturing methods and the heat treating processing steps including prehardening processes, through hardening, and case hardening processes.
Image
Published: 01 February 2005
Fig. 12.20 Forging box of a radial precision forging machine illustrating the tool function and adjustment. (a) Dies. (b) Pitman arm. (c) Guides. (d) Eccentric shaft. (e) Adjustment housing. (f) Adjustment screw. (g) Worm gear drive. (h) Adjustment input. (i) Adjustable cam. (k) Forging box
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
... where very little power is involved. Worm Gears In a single-enveloping worm gear set, in which the worm is cylindrical in shape, several teeth may be in mesh at the same time, but only one tooth at a time is fully engaged. The point (or points) of contact in this type of gear set constitutes too...
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250257
EISBN: 978-1-62708-345-4
... Abstract Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This chapter begins with the classification of gear failure modes, followed by sections discussing the characteristics...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This chapter begins with the classification of gear failure modes, followed by sections discussing the characteristics of various fatigue failures. Then, it provides information on the modes of impact fractures, wear, scuffing, and stress rupture. Next, the chapter describes the causes of gear failures and discusses the processes involved in conducting the failure analysis. Finally, the chapter presents examples of gear failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250089
EISBN: 978-1-62708-345-4
... between sections to allow shear cutting to be used. Therefore, this process is best suited to large production runs. Hobbing Hobbing is a practical method for cutting teeth in spur gears, helical gears, worms, worm gears, and many special forms. Conventional hobbing machines are not applicable...
Abstract
Metal removal processes for gear manufacture can be grouped into two general categories: rough machining (or gear cutting) and finishing (or high-precision machining). This chapter discusses the processes involved in machining for bevel and other gears. The chapter describes the type of gear as the major variable and discusses the machining methods best suited to specific conditions. Next, the chapter provides information on gear cutter material and nominal speeds and feeds for gear hobbing. Further, it describes the cutting fluids recommended for gear cutting and presents a comparison of steels for gear cutting. The operating principles of computer numerical control and hobbing machines are also covered. This is followed by sections that discuss the processes involved in grinding, honing, and lapping of gears. Finally, the chapter provides information on the superfinishing of gears.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040141
EISBN: 978-1-62708-300-3
... (for rounds and squares) by rotating each adjustment housing through a link, screw, adjustment nut, and worm gear drive powered by one or two hydraulic motors. Each adjustment nut rests, through a piston, on an oil cushion of a hydraulic cylinder. During operation, the forging pressure generates in this oil...
Abstract
Prior to forging, it is often necessary to preform billet stock to achieve adequate material distribution. This chapter discusses the equipment used for such operations, including transverse rolling machines, electric upsetters, ring-rolling mills, horizontal presses, and rotary (orbital) and radial forging machines. It describes their basic operating principles as well as advantages and disadvantages.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250019
EISBN: 978-1-62708-345-4
... Abstract This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced...
Abstract
This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced by friction, lubrication, and wear. Equations for calculating lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication range, are given. Also, given is an equation for Blok's flash temperature, which is used for predicting the risk of scuffing. In addition, recommendations for lubricant selection, viscosity, and method of application are discussed. The chapter discusses in greater detail the applications of oil lubricant. Finally, a case history demonstrates how the tribological principles discussed in the chapter can be applied practically to avoid gear failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050191
EISBN: 978-1-62708-311-9
.... Gears, because of the wide varieties, sizes, and differences in tooth profiles, represent unique applications. External spur and helical gears, bevel and worm gears, internal gears, racks, and sprockets are good examples of the kinds of gears of which the size can range from less than 6 mm (0.25...
Abstract
Induction heat treating is used in a wide range of applications. Typical uses, as described in this chapter, include the surface hardening of many types of shafts as well as gears and sprockets and the through-hardening of gripping teeth, cutting edges, and impact zones incorporated into various types of tools and track pins manufactured for off-highway equipment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200007
EISBN: 978-1-62708-354-6
... ranging from a few pounds to many tons. There is a wide variation in the designs of valves and piping components. Figure 2-96 shows a series of 12 in. (300 mm) worm gear-operated plug valves installed on gas scrubbers in a compressor station. Fig. 2-96 12 in. (300 mm) plug valves installed on gas...
Abstract
Steel castings are produced in thousands of designs for different applications. They fill needs in many industries, including transportation, construction machinery, earthmoving equipment, rolling mills, mining, oil and gas exploration, and power generation. This chapter touches upon the variety of applications for which steel castings can be supplied and the ranges of casting size and complexity. Photographs in this chapter provide an understanding of these applications, their size and complexity, and the types of cast steels produced.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250129
EISBN: 978-1-62708-345-4
... different types of gears can be die cast, such as spur, helical worm, clusters, and bevel gears. Applications for these types of gears include toys, washing machines, small appliances, hand tools, cameras, business machines, and similar equipment. Forming Stamping and Fine Blanking Stamping...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630281
EISBN: 978-1-62708-270-9
... to the toe, or edge, of a weld and left unfilled. w wear. The undesired removal of material from contacting surfaces by mechanical action. worm gear. A type of gear in which the gear teeth are wrapped around the shaftlike hub, somewhat as threads are wrapped around a bolt or screw. y yield point. The first...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 March 2024
DOI: 10.31399/asm.tb.gvar.t59360001
EISBN: 978-1-62708-435-2
... are inherently low and rarely the cause of failure. Gearboxes based on orthogonally oriented worm gears ( Fig. 1.1c ) tend to be used for very low-speed applications. As a result, their vibration characteristics are not well studied. Sources and Types of Gearbox Vibrations Of the major types...
Abstract
In the case of gearboxes, vibration is the primary mode of failure even at the mid-range of operating speeds. Avoiding such failures requires an understanding of gearbox design, vibration theory, and material properties. This chapter details sources and types of gearbox vibrations; characteristics of gearbox vibrations; fundamentals of periodic vibrations; and vibration theory. It provides housing design for single-stage offset parallel gearboxes, high-speed gearboxes, and epicyclic gearboxes. The chapter then provides an analysis and selection of design factors for vibration reduction. It presents five types of gear tooth geometry errors. The chapter also focuses on gear quality inspection and on bearing-induced vibrations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420001
EISBN: 978-1-62708-452-9
... the action of a worm pinion. This set is called the high-ratio hypoid set ( Fig. 1-7 ). Fig. 1-6. Hypoid gear and pinion set. Fig. 1-7. High-ratio hypoid set. Basic Applied Stresses The loads applied to one tooth by the action of its mating tooth are at any moment of time a line...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 March 2024
DOI: 10.31399/asm.tb.gvar.9781627084352
EISBN: 978-1-62708-435-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... of gear configurations including spur, worm, face, helical, bevel, internal, and elliptical gears, gear racks, and microgears (for computer memory devices). Selection of a material depends not only on its properties, but also on the manufacturing methods used, part shape and size, molding or machining...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180197
EISBN: 978-1-62708-256-3
... general corrosion. W wear. The undesired removal of material from contacting surfaces by me- chanical action. worm gear. A type of gear in which the gear teeth are wrapped around the shaft-like hub, somewhat as threads are wrapped around a bolt or screw. Y yield point. The rst stress in a material, less...
1