Skip Nav Destination
Close Modal
Search Results for
welds
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1873 Search Results for
welds
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930039
EISBN: 978-1-62708-359-1
... Abstract This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation...
Abstract
This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens from the weld. The third component of weld characterization is the measurement of mechanical and corrosion properties. Following the discussion on the characterization procedures, the second part of this article provides examples of how two particular welds were characterized according to these procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930113
EISBN: 978-1-62708-359-1
... Abstract This article discusses the various options for controlling fatigue and fracture in welded steel structures, the factors that influence them the most, and some of the leading codes and standards for designing against these failure mechanisms. The two most widely used approaches...
Abstract
This article discusses the various options for controlling fatigue and fracture in welded steel structures, the factors that influence them the most, and some of the leading codes and standards for designing against these failure mechanisms. The two most widely used approaches discussed for fatigue control in welded joints are the S-N curve approach and the fracture mechanics assessment methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930163
EISBN: 978-1-62708-359-1
... high-temperature creep plastic collapse weld discontinuities IT IS GENERALLY ACCEPTED THAT all welded structures enter service containing flaws that can range from volumetric discontinuities, such as porosity or slag inclusions, to planar defects, such as a lack of side-wall fusion or hydrogen...
Abstract
Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down into the categories of fracture, fatigue, environmental cracking, and high-temperature creep. This article discusses each of these categories, as well as the benefits of a fitness-for-service approach.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
... Abstract This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized...
Abstract
This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized. The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness in the HAZ and the selection of the proper filler metal. The article provides a comparison between single-pass and multipass welding and describes the effect of welding procedures on weldment properties and the effects of residual stresses on the service behavior of welded structures. It also describes the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... Abstract Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930283
EISBN: 978-1-62708-359-1
... Abstract This article reviews weldability of aluminum alloys and factors that affect weld performance. It first addresses hot tears, which can form during the welding of various aluminum alloys. It then presents comparison data from different weldability tests and discusses the specific...
Abstract
This article reviews weldability of aluminum alloys and factors that affect weld performance. It first addresses hot tears, which can form during the welding of various aluminum alloys. It then presents comparison data from different weldability tests and discusses the specific properties that affect welding, namely oxide characteristics; the solubility of hydrogen in molten aluminum; and its thermal, electrical, and nonmagnetic characteristics. The article addresses the primary factors commonly considered when selecting a welding filler alloy, namely ease of welding or freedom from cracking, tensile or shear strength of the weld, weld ductility, service temperature, corrosion resistance, and color match between the weld and base alloy after anodizing. A number of factors, both global and local, that influence the fatigue performance of welded aluminum joints are also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... Abstract This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
... Abstract Nickel-base alloys are generally used in harsh environments that demand either corrosion resistance or high-temperature strength. This article first describes the general welding characteristics of nickel-base alloys. It then describes the weldability of solid-solution nickel-base...
Abstract
Nickel-base alloys are generally used in harsh environments that demand either corrosion resistance or high-temperature strength. This article first describes the general welding characteristics of nickel-base alloys. It then describes the weldability of solid-solution nickel-base alloys in terms of grain boundary precipitation, grain growth, and hot cracking in the heat-affected zone; fusion zone segregation and porosity; and postweld heat treatments. Next, the article analyzes the welding characteristics of dissimilar and clad materials. This is followed by sections summarizing the various types and general weldability of age-hardened nickel-base alloys. The article then discusses the composition, welding metallurgy, and properties of cast nickel-base superalloys. Finally, it provides information on the welding of dissimilar metals, filler metal selection for welding clad materials and for overlay cladding, service conditions during repair, and welding procedural idiosyncrasies of cobalt-base alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930353
EISBN: 978-1-62708-359-1
... Abstract This article discusses the weldability and fusion weld properties of refractory metal alloys. The alloys discussed include tantalum, niobium, rhenium, molybdenum, and tungsten. molybdenum niobium rhenium tantalum tungsten weldability THE REFRACTORY METALS, which include...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130503
EISBN: 978-1-62708-284-6
... Abstract Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel...
Abstract
Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel weldment. These include poor workmanship, a variety of hydrogen-assisted cracking failures, stress-corrosion cracking, fatigue, and solidification cracking in steel welds. Hydrogen-assisted cracking can appear in four common forms, namely underbead or delayed cracking, weld metal fisheyes, ferrite vein cracking, and hydrogen-assisted reduced ductility.
Image
Published: 01 August 1999
Fig. 11.20 (Part 1) Effect of composition of parent metal on submerged-arc welds. Welds made under identical conditions in normalized plates of different compositions. (a) 0.20C-0.50Mn (wt%). CE = 0.3. Weld region. Nitric-acetic acid. 2×. (b) 0.20C-0.50Mn (wt%). CE = 0.3. Heat-affected
More
Image
Published: 01 August 1999
Fig. 11.20 (Part 2) Effect of composition of parent metal on submerged-arc welds. Welds made under identical conditions in normalized plates of different compositions. (a) 0.20C-0.50Mn (wt%). CE = 0.3. Weld region. Nitric-acetic acid. 2×. (b) 0.20C-0.50Mn (wt%). CE = 0.3. Heat-affected
More
Image
Published: 01 July 1997
Fig. 8 Electron-beam welds showing flaws that can occur in poor welds and the absence of flaws in a good weld with reinforcement
More
Image
Published: 01 July 1997
Fig. 9 Plasma arc welds showing flaws that can occur in poor welds and the absence of flaws in good reinforced welds
More
Image
Published: 01 December 2008
Fig. 23 Influence of sulfur level on pitting resistance of unannealed welds for different solidification modes. Source: Ref 23
More
Image
Published: 01 December 2008
Fig. 24 Influence of sulfur level on pitting resistance of welds without homogenizing anneal. FA, ferrite forming first on solidification as opposed to austenite first, AF. Source: Ref 23
More
Image
Published: 01 November 2011
Fig. 3.3 Relation of work metal to electrodes when making single-spot welds by direct welding. Source: Ref 3.4
More
Image
Published: 01 November 2011
Fig. 3.4 Relation of work metal to electrodes when making multiple-spot welds: (a) and (b) direct welding; (c), (d), and (e) series welding. Source: Ref 3.4
More
Image
Published: 01 November 2011
Fig. 5.15 Reducing distortion by placing welds around neutral axis. Source: Ref 5.8 , p 129
More
1