Skip Nav Destination
Close Modal
Search Results for
welded components
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 679
Search Results for welded components
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Crack growth rates in Inconel 718 weld components at 538 °C (1000 °F). Sour...
Available to Purchase
in Avoidance, Control, and Repair of Fatigue Damage[1]
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 11.84 Crack growth rates in Inconel 718 weld components at 538 °C (1000 °F). Source: Ref 11.100
More
Book Chapter
Joining Technology and Practice
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280149
EISBN: 978-1-62708-267-9
... information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use. brazing fusion welding solid-state welding superalloys transient liquid phase bonding Introduction General Aspects...
Abstract
Superalloys, except those with high aluminum and titanium contents, are welded with little difficulty. They can also be successfully brazed. This chapter describes the welding and brazing processes most often used and the factors that must be considered when making application decisions. It discusses the basic concepts of fusion welding and the differences between solid-solution-hardened and precipitation-hardened wrought superalloys. It addresses joint integrity, design, weld-related cracking, and the effect of grain size, precipitates, and contaminants. It covers common fusion welding techniques, defect prevention, fixturing, heat treatments, and general practices, including the use of filler metals. It also discusses several solid-state welding methods, superplastic forming, and transient liquid phase bonding, a type of diffusion welding process. The chapter includes extensive information on brazing processes, atmospheres, filler metals, and surface preparation procedures. It also includes examples of nickel-base welded components for aerospace use.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
... the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
Image
Examples of components produced by gas tungsten arc welding (GTAW). (a) Thi...
Available to PurchasePublished: 01 October 2011
Fig. 6.27 Examples of components produced by gas tungsten arc welding (GTAW). (a) Thin walled aluminum. (b) Titanium components. Courtesy of Lynn Welding
More
Image
Published: 01 November 2011
Image
Comparison of primary components of two vertical welding processes in which...
Available to PurchasePublished: 01 November 2011
Fig. 2.16 Comparison of primary components of two vertical welding processes in which molten weld pools are confined by cooling shoes: (a) electroslag welding and (b) electrogas welding (EGW). Source: Ref 2.3
More
Image
Published: 01 November 2011
Image
Published: 01 November 2011
Image
Schematic showing key components used in parallel gap explosion welding pro...
Available to PurchasePublished: 01 November 2011
Fig. 6.22 Schematic showing key components used in parallel gap explosion welding process. Source: Ref 6.11
More
Image
Published: 01 October 2012
Image
in Consequences of Using Advanced High-Strength Steels
> Advanced-High Strength Steels: Science, Technology, and Applications
Published: 01 August 2013
Image
Relative fatigue behavior of welded joints and unwelded component (with and...
Available to PurchasePublished: 01 July 1997
Fig. 7 Relative fatigue behavior of welded joints and unwelded component (with and without stress concentrators)
More
Image
in Consequences of Using Advanced High-Strength Steels
> Advanced High-Strength Steels: Science, Technology, and Applications, Second Edition
Published: 31 October 2024
Book Chapter
Cast-Weld Construction
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200158
EISBN: 978-1-62708-354-6
... to the designer. They are: (1) the use of a cast component can simplify the production of a fabricated component by allowing the weld to be placed in a more accessible position, (2) the use of a cast component in a fabricated structure can reduce the weight of fabricated structures and position the weld in a low...
Abstract
This chapter presents the criteria, methods, and benefits of cast-weld construction.
Book Chapter
Metallurgy Variables in Fusion Welding
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290099
EISBN: 978-1-62708-306-5
... section provides information on the residual stresses and distortion that remain after welding. The focus then shifts to distortion control of weldments. Inclusions and cracking are discussed in detail. The chapter also discusses the causes for reduced fatigue strength of a component by a weld: stress...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source causes physical state changes, metallurgical phase transformations, and transient thermal stresses and metal movement. This chapter begins by discussing weld metal solidification behavior and the solid-state transformations of the main classes of metals and alloys during fusion welding. The main classes include work- or strain-hardened metals and alloys, precipitation-hardened alloys, transformation-hardened steels and cast irons, stainless steels, and solid-solution and dispersion-hardened alloys. The following section provides information on the residual stresses and distortion that remain after welding. The focus then shifts to distortion control of weldments. Inclusions and cracking are discussed in detail. The chapter also discusses the causes for reduced fatigue strength of a component by a weld: stress concentration due to weld shape and joint geometry; stress concentration due to weld imperfections; and residual welding stresses. Inspection and characterization of welds are described in the final section of this chapter.
Book Chapter
Fracture Mechanics and Service Fitness of Welds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930163
EISBN: 978-1-62708-359-1
... for the component under consideration. It should be noted from the above equations that secondary stresses (for example, welding residual stresses or thermal stresses) are incorporated in the calculation of the K r coordinate but are not included in the calculation of S r because, by definition, secondary...
Abstract
Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down into the categories of fracture, fatigue, environmental cracking, and high-temperature creep. This article discusses each of these categories, as well as the benefits of a fitness-for-service approach.
Book Chapter
Corrosion of Nonferrous Alloy Weldments
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820143
EISBN: 978-1-62708-339-3
... be formed by alloying components of the base and filler alloys to produce an anodic zone at the transition of the weld and base metal. If a 5 xxx alloy is welded with an aluminum-silicon filler, or vice versa, then a magnesium silicide constituent can be formed. For certain immersed conditions...
Abstract
The nonferrous alloys described in this chapter include aluminum and aluminum alloys, copper and copper alloys, titanium and titanium alloys, zirconium and zirconium alloys, and tantalum and tantalum alloys. Some of the factors that affect the corrosion performance of welded nonferrous assemblies include galvanic effects, crevices, assembly stresses in products susceptible to stress-corrosion cracking, and hydrogen pickup and subsequent cracking. The emphasis is placed on the compositions, general welding considerations, and corrosion behavior of these alloys.
Book Chapter
Stress-Assisted Corrosion and Cracking
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080379
EISBN: 978-1-62708-304-1
... steel stress-induced cracking 14.1 Introduction Most high-temperature components are under stress during service. The stress can be residual, resulting from welding or forming operations prior to service. When the temperature is not high enough, these stresses can remain in the component during...
Abstract
This chapter discusses two damage mechanisms in which stress plays a major role. In the one case, stress causes cracks in the oxide scale on metals, leading to preferential corrosion attack. An example from industry of this type of failure is the circumferential cracking that occurs on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically occurs at the lower end of the intermediate temperature range and has been observed in ferritic steels, stainless steels, Fe-Ni-Cr alloys, and nickel-base alloys, as described in the chapter.
Book Chapter
Inspection and Evaluation of Weldments
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930085
EISBN: 978-1-62708-359-1
... Abstract Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation...
Abstract
Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation procedures, performance, and limitations of NDE. It provides information on the training and certification of NDE operators, evaluation of test results, and guidance to method selection. Typical examples of various NDE methods for welds are also described.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930113
EISBN: 978-1-62708-359-1
... fabricated components and structures are welded, and invariably the weld joint is the most critical area from the performance perspective. An examination of structural and component failures documented in open literature over the past 50 years or so clearly indicates that failures predominantly start...
Abstract
This article discusses the various options for controlling fatigue and fracture in welded steel structures, the factors that influence them the most, and some of the leading codes and standards for designing against these failure mechanisms. The two most widely used approaches discussed for fatigue control in welded joints are the S-N curve approach and the fracture mechanics assessment methods.
1