Skip Nav Destination
Close Modal
By
T.J. Eden, D.E. Wolfe, V. Champagne, C. Widener
Search Results for
weld bead morphology
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 55
Search Results for weld bead morphology
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930039
EISBN: 978-1-62708-359-1
... by characterizing the size or shape of the weld. An example of this is where factors related to the welding procedure, such as inadequate weld size, convexity of the bead, or lack of penetration, may cause a weld to fail. In other cases, it is important to characterize metallurgical factors such as weld metal...
Abstract
This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens from the weld. The third component of weld characterization is the measurement of mechanical and corrosion properties. Following the discussion on the characterization procedures, the second part of this article provides examples of how two particular welds were characterized according to these procedures.
Book Chapter
Corrosion of Duplex Stainless Steel Weldments
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820099
EISBN: 978-1-62708-339-3
... Solidification morphologies of fusion welded alloy 2205. (a) As-welded base metal. (b) As-welded composite region. (c) As-welded weld metal. (d) Postweld heat treated solution-annealed base metal. (e) Solution annealed composite region. (f) Solution annealed weld metal. Source: Ref 2 Mechanical...
Abstract
Duplex stainless steels are two-phase alloys based on the iron-chromium-nickel system. Duplex stainless steels offer corrosion resistance and cost advantages over the common austenitic stainless steels. Although there are some problems with welding duplex alloys, considerable progress has been made in defining the correct parameters and chemistry modifications for achieving sound welds. This chapter provides a basic understanding of the development, grade designations, microstructure, properties, and general welding considerations of duplex stainless steel. It also discusses the influence of ferrite-austenite balance on corrosion resistance and the influence of different welding conditions on various material properties of alloy 2205 (UNS S31803).
Book Chapter
Corrosion of Stainless Steel Weldments
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030096
EISBN: 978-1-62708-282-2
... of a weldment shown in Fig. 1 are for a single-pass weld, similar solidification patterns and compositional differences can be expected to occur in underlying weld beads during multipass applications. Fig. 1 Weld cross section. Source: Ref 3 Fig. 2 Concentration profile of chromium...
Abstract
This chapter discusses various factors that affect corrosion of stainless steel weldments. It begins by providing an overview of the metallurgical factors associated with welding. This is followed by a discussion on preferential attack associated with weld metal precipitates in austenitic stainless steels as well as several forms of corrosion associated with welding. The effects of gas-tungsten arc weld shielding gas composition and heat-tint oxides on corrosion resistance are then covered. Microbiological corrosion of butt welds in water tanks is also illustrated. In addition, the chapter provides information on corrosion of ferritic and duplex stainless steel weldments.
Book Chapter
Properties of Stainless Steel Welds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... constitution diagram for stainless steel weld metal To use this diagram, both the chromium and nickel equivalents are first calculated from the composition of a given weld bead. Next, these equivalents are plotted as coordinates on the Schaeffler diagram. This allows an estimated weld metal...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Metallurgy Variables in Fusion Welding
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290099
EISBN: 978-1-62708-306-5
... pool (larger weld bead), and the isotemperature contours elongate more toward the back of the arc, for low-conductivity materials ( Fig. 5.3a ). For aluminum ( Fig. 5.3c ), a larger heat input would be required to obtain the same weld size as the stainless steel weldment. The effect of travel speed...
Abstract
During fusion welding, the thermal cycles produced by the moving heat source causes physical state changes, metallurgical phase transformations, and transient thermal stresses and metal movement. This chapter begins by discussing weld metal solidification behavior and the solid-state transformations of the main classes of metals and alloys during fusion welding. The main classes include work- or strain-hardened metals and alloys, precipitation-hardened alloys, transformation-hardened steels and cast irons, stainless steels, and solid-solution and dispersion-hardened alloys. The following section provides information on the residual stresses and distortion that remain after welding. The focus then shifts to distortion control of weldments. Inclusions and cracking are discussed in detail. The chapter also discusses the causes for reduced fatigue strength of a component by a weld: stress concentration due to weld shape and joint geometry; stress concentration due to weld imperfections; and residual welding stresses. Inspection and characterization of welds are described in the final section of this chapter.
Book Chapter
Properties of Carbon Alloy Steel Welds
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
...), microstructures and morphologies become important. A wide range of microstructures can be developed based on cooling rates, and these microstructures depend on energy input, preheat, metal thickness (heat sink effects), weld bead size, and reheating effects due to multipass welding. Asa result of their different...
Abstract
This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized. The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness in the HAZ and the selection of the proper filler metal. The article provides a comparison between single-pass and multipass welding and describes the effect of welding procedures on weldment properties and the effects of residual stresses on the service behavior of welded structures. It also describes the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments.
Book Chapter
Coal-Fired Boilers
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080259
EISBN: 978-1-62708-304-1
... of Welding Services Inc. Maximum outer tube metal temperature limits based on oxidation for common ferritic steels used in waterwalls, as suggested by a boiler designer Table 10.4 Maximum outer tube metal temperature limits based on oxidation for common ferritic steels used in waterwalls...
Abstract
This chapter discusses material-related problems associated with coal-fired burners. It explains how high temperatures affect heat-absorbing surfaces in furnace combustion areas and in the convection pass of superheaters and reheaters. It describes how low-NOx combustion technology, intended to reduce NOx emissions, accelerates tube wall wastage. It also covers circumferential cracking in furnace waterwalls, thermal fatigue cracking induced by waterlances and water cannons, superheater-reheater corrosion, and erosion in fluidized-bed boilers.
Book Chapter
Corrosion of Carbon Steel and Low-Alloy Steel Weldments
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
... dependent on the skill of the welder. Lack of fusion or slag inclusions are potential problems. The relatively small beads usually result in a high percentage of refining in multipass welds, and very good toughness is achievable with some electrodes. Very good quality. Porosity or lack of fusion can...
Abstract
Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.
Book Chapter
Weld Solidification
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930003
EISBN: 978-1-62708-359-1
... to a large extent by the welding parameters. The volume is directly proportional to the arc current (heat input) and inversely proportional to the welding speed. In addition, the speed of the moving heat source has an influence on the overall bead shape. For arc welding processes, the puddle shape changes...
Abstract
It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend on the solidification behavior and the resulting microstructural characteristics, understanding weld pool solidification behavior is essential. This article provides a general introduction of key welding variables including solidification of the weld metal or fusion zone and microstructure of the weld and heat-affected zone. It discusses the effects of welding on microstructure and the causes and remedies of common welding flaws.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130503
EISBN: 978-1-62708-284-6
... was used to butt weld two 19 mm (3/ 4 in.) thick A709-grade 250 plates. The joint design was a simple square groove butt joint with 1.6 mm (1/ 16 in.) root opening. It was designed to be welded in two passes, with a single pass on each side of the plate. After the first side was welded, the weld bead...
Abstract
Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel weldment. These include poor workmanship, a variety of hydrogen-assisted cracking failures, stress-corrosion cracking, fatigue, and solidification cracking in steel welds. Hydrogen-assisted cracking can appear in four common forms, namely underbead or delayed cracking, weld metal fisheyes, ferrite vein cracking, and hydrogen-assisted reduced ductility.
Book Chapter
Weld Corrosion in Specific Industries and Environments
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820177
EISBN: 978-1-62708-339-3
... limited grinding were performed. After welding, dye-penetrant inspection revealed many thin, branched cracks in the HAZ of welds, as shown in Fig. 5 . Fig. 5 Intergranular cracking in HAZ of stringer bead weld on type 304 (S30400) stainless steel pipe due to zinc embrittlement. Weld area had been...
Abstract
This chapter reviews weld corrosion in three key application areas: petroleum refining and petrochemical operations, boiling water reactor piping systems, and components used in pulp and paper plants. The discussion of each area addresses general design and service characteristics, types of weld corrosion issues, and prevention or mitigation strategies.
Book Chapter
Corrosion of Austenitic Stainless Steel Weldments
Available to PurchaseBook: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820043
EISBN: 978-1-62708-339-3
... Abstract Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This chapter provides a basic understanding of grade designations, properties, and welding considerations of austenitic stainless steels. It also...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This chapter provides a basic understanding of grade designations, properties, and welding considerations of austenitic stainless steels. It also discusses general types of corrosive attack and their effects on service integrity as well as detection and control measures. The five corrosive attack mechanisms covered are intergranular corrosion, preferential attack associated with weld metal precipitates, pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion.
Book Chapter
Joining Technology and Practice
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
..., the weld fusion zone in titanium alloys is characterized by coarse, columnar prior-beta grains that originated during weld solidification. The size and morphology of these grains depend on the nature of the heat flow that occurs during weld solidification. Fig. 9.1 Columnar beta grains in a spot...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Book Chapter
Glossary of Terms
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560427
EISBN: 978-1-62708-291-4
... of a weld bead or in the molten weld pool creep. Time-dependent strain occurring under stress. The creep strain occurring at a diminishing rate is called primary creep; that occurring at a minimum and almost constant rate, secondary creep; and that occurring at an accelerating rate, tertiary creep. critical...
Abstract
This appendix is a compilation of terms and definitions related to light microscopy of carbon steels.
Book Chapter
Opportunities for Powder-Binder Forming Technologies
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
... tools, pen knives, or sculpting tools. Figure 11.4 is an example of the block that presents an easily carved bronze. After firing, the material reaches 450 MPa (65 ksi) tensile strength. Strands of precious metal wire are formed by extrusion and are formed into loops or other creations. Beads...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.9781627082914
EISBN: 978-1-62708-291-4
Book Chapter
Defects Leading to Failure
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610585
EISBN: 978-1-62708-303-4
... Abstract This appendix provides detailed information on design deficiencies, material and manufacturing defects, and service-life anomalies. It covers ingot-related defects, forging and sheet forming imperfections, casting defects, heat treating defects, and weld discontinuities. It shows how...
Abstract
This appendix provides detailed information on design deficiencies, material and manufacturing defects, and service-life anomalies. It covers ingot-related defects, forging and sheet forming imperfections, casting defects, heat treating defects, and weld discontinuities. It shows how application life is affected by the severity of service conditions and discusses the consequences of using inappropriate materials.
Book Chapter
Solidification
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140165
EISBN: 978-1-62708-264-8
..., and in weld metal, where the small liquid pool allows even faster cooling rates, the spacings can be as small as 100 μm. The diameters of the dendrite main stalks (called primary dendrite arms) are smaller than their spacing, d , by approximately 10 times. The diameter of a human hair is approximately 50 μm...
Abstract
Engineering metals undergo many transformations in the course of production, none more critical than those that occur during solidification. This chapter discusses the process of solidification and its effects on the structure and properties of cast metals. It describes the relationship between cooling rate, grain size, grain shape, and phase structures. It explains how the transition from liquid to solid state creates the conditions under which microsegregation occurs, and how it impacts the distribution of alloying elements, carbides, and inclusions. The link between solidification and porosity is also discussed along with its detrimental effect on the mechanical properties of metal castings.
Book Chapter
Cold Spray Applications in the Defense Industry
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460227
EISBN: 978-1-62708-285-3
... reported an annual cost for H-60 main gearbox corrosion of $10.8 million to the Navy and $6.7 million to the Army, for a total of approximately $17.5 million for 600 helicopters. Conventional repair processes such as welding, plating, or patching with composite material often either impart additional...
Abstract
High-pressure cold spray repair process has been used on a number of different applications in the defense industry. This chapter describes various applications for cold spray systems that have operating pressures greater than 2.4 MPa (350 psi) and operating temperatures greater than 500 deg C (930 deg F).
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9
1