Skip Nav Destination
Close Modal
Search Results for
weathering
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 112 Search Results for
weathering
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780153
EISBN: 978-1-62708-281-5
... Abstract This article presents a general overview of outdoor weather aging factors, their effects on plastic materials, and the accelerated test methods that can be used to estimate the reaction of a plastic component during actual use. Weather and radiation factors that contribute...
Abstract
This article presents a general overview of outdoor weather aging factors, their effects on plastic materials, and the accelerated test methods that can be used to estimate the reaction of a plastic component during actual use. Weather and radiation factors that contribute to degradation in plastics include temperature variations, moisture, sunlight, oxidation, microbiologic attack, and other environmental elements. The article also describes the tests used to predict the behavior of a plastic material to outdoor exposure, discussing the use of xenon arc lamp for the weatherometer and fadeometer and the use of fluorescent sunlamp in test devices.
Image
Published: 01 August 1999
Fig. 8 Effects of weathering depth of corrosion and loss of tensile strength for alloys 1100, 3003, and 3004. Shown is the average performance of the three alloys, all in H14 temper. Seacoast exposure was at a severe location (Pt. Judith, Rl); industrial exposure was at New Kensington, PA
More
Image
Published: 01 August 1999
Fig. 9 Correlation of weathering data for specimens of alloys 1100, 3003, and 3004 (all in H14 temper) exposed to industrial atmosphere (curves) with service experience with aluminum alloys in various locations (bars)
More
Image
in Corrosion of Welded, Brazed, Soldered, and Adhesive-Bonded Joints
> Corrosion of Aluminum and Aluminum Alloys
Published: 01 August 1999
Fig. 7 Effect of outdoor weathering on the strength of aluminum alloy/epoxy-polyamide joints
More
Image
Published: 01 August 1999
Fig. 11 Weathering data for anodically coated aluminum in an industrial atmosphere
More
Image
in Surface Engineering to Change the Surface Chemistry
> Surface Engineering for Corrosion and Wear Resistance
Published: 01 March 2001
Fig. 2 Weathering data for anodically coated aluminum in an industrial atmosphere
More
Image
Published: 01 January 2000
Fig. 1 Uniform corrosion (rusting) of a weathering steel highway bridge girder
More
Image
Published: 01 January 2000
Fig. 21 Corroded weathering steel formwork on the ceiling of a parking garage. The seams in this corrugated structure act as condensation traps and lead to wet atmospheric corrosion.
More
Image
Published: 01 January 2000
Fig. 22 Heavy buildup of corrosion scale on weathering steel structural members in conditions of poor air circulation, high humidity, and no wetting/drying
More
Image
Published: 01 January 2000
Fig. 23 Heavy corrosion scale buildup on structural members of weathering steel at a packet where water could collect and stand
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780329
EISBN: 978-1-62708-281-5
... Abstract This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light...
Abstract
This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light wavelengths responsible for polymer photochemistry, problems with artificial light sources, general photooxidation and specific photochemical reactions important in plastics, and the factors influencing the rate of degradation. The approaches used to stabilize plastics against photochemical damage, including ultraviolet light absorbers, oxidation inhibitors, and the use of protective coatings, are also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910301
EISBN: 978-1-62708-250-1
... is devoted to the discussion on corrosion allowance used for steel parts subject to uniform corrosion. Finally, the chapter describes the design considerations for using weathering steels. corrosion control crevice corrosion galvanic corrosion erosion-corrosion stress-corrosion cracking corrosion...
Abstract
The design process is the first and most important step in corrosion control. Major savings in operating costs are possible by anticipating corrosion problems so as to provide proper design for equipment before assembly or construction begins. This chapter describes the role of the design team in producing a successful final design, general considerations in corrosion-control design, and design details that accelerate corrosion. The details that must be considered when attempting to control corrosion by design include plant/site location, plant environment, component/assembly shape, fluid movement, surface preparation and coating procedures, and compatibility, insulation, and stress considerations. Design solutions for specific forms of corrosion, namely crevice corrosion, galvanic corrosion, erosion-corrosion, and stress-corrosion cracking, are then considered. A brief section is devoted to the discussion on corrosion allowance used for steel parts subject to uniform corrosion. Finally, the chapter describes the design considerations for using weathering steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790007
EISBN: 978-1-62708-356-0
.... The key ingredient and alloys covered include iron-chromium alloys, acid- and weather-resistant alloy, ferrochromium, martensitic stainless steel, chromium-nickel austenitic stainless steels, and ferritic chromium stainless steel. Information on the early discoverers and pioneers of stainless steel...
Abstract
This chapter briefly describes the early discoveries of the key ingredients of and alloys of stainless steel that occurred in the 18th and 19th centuries and the advancement that happened in the early part of the 20th century. The key ingredient and alloys covered include iron-chromium alloys, acid- and weather-resistant alloy, ferrochromium, martensitic stainless steel, chromium-nickel austenitic stainless steels, and ferritic chromium stainless steel. Information on the early discoverers and pioneers of stainless steel is also provided.
Image
Published: 01 October 2011
Fig. 8.13 Atmospheric corrosion versus time of carbon, copper steels, and HSLA weathering steels in a semiindustrial or industrial environment
More
Image
Published: 01 June 1985
Fig. 5-39. Spur gear used in a seasonal operation was at the top of an assembly, out of the oil, and subject to corrosion by cold weather condensation during the idle season.
More
Image
Published: 30 November 2013
Fig. 7 Surface of a brittle fracture in a cold-drawn, stress-relieved 1035 steel axle tube. Fracture originated at a weld defect (arrow) during testing in very cold weather. Note the well-defined chevron marks located clockwise from the arrow, pointing back toward the origin. Note also
More
Image
Published: 01 November 2012
Fig. 25 Surface of a brittle fracture in a cold drawn, stress-relieved 1035 steel axle tube. Fracture originated at a weld defect (arrow) during testing in very cold weather. Note the well-defined chevron marks clockwise from the arrow pointing back toward the origin. Note also that the steel
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270082
EISBN: 978-1-62708-301-0
... of the three tail rotor blades had sheared off at the outboard rib trailing edge. The other two tail rotor blades were intact. It was reported that the blades were subjected to extreme weather conditions in Antarctica. Visual Examination of General Physical Features The damaged blade is shown in Fig...
Abstract
This chapter discusses the investigation of a helicopter tail rotor blade that fractured during a test flight. It includes images of the damaged blade along with close-ups of both sides of the blade tip showing that the tip tore off at the rivets. Based on their observations, investigators concluded that the rotor blade encountered a foreign object in flight causing the tip to shear off.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870135
EISBN: 978-1-62708-299-0
... of economics, safety, and aesthetics, the importance of atmospheric corrosion, or weathering, and its control is well recognized. It is not surprising, therefore, that a vast body of literature exists on the performance of materials in the atmosphere and the characterization of such environments (see...
Abstract
Aluminum products are used extensively in natural atmospheres and in and around water. They are also widely used in building materials and as containers for chemicals and food and beverage products. This chapter discusses the corrosion mechanisms associated with these environments and the influence of various factors and prevention methods. It also includes an extensive amount of data of corrosion rates, corrosion resistance, and changes in mechanical properties.
1