Skip Nav Destination
Close Modal
Search Results for
wavelength-dispersive X-ray fluorescence spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-18 of 18 Search Results for
wavelength-dispersive X-ray fluorescence spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720139
EISBN: 978-1-62708-305-8
... film deposits X-ray fluorescence with energy dispersive detectors have a threshold sensitivity of ~0.02% and a precision for quantitative analysis of ~1% relative, or 0.02% absolute, depending on count time. The detection threshold and precision for wavelength dispersive detectors is a threshold...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by x-ray fluorescence (XRF) and optical emission spectroscopy (OES). High-temperature combustion and inert gas fusion methods are typically used to analyze dissolved gases (oxygen, nitrogen, and hydrogen) and, in some cases, carbon and sulfur in metals. This chapter discusses the operating principles of XRF, OES, combustion and inert gas fusion analysis, surface analysis, and scanning auger microprobe analysis. The details of equipment set-up used for chemical composition analysis as well as the capabilities of related techniques of these methods are also covered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110434
EISBN: 978-1-62708-247-1
... detector scanning transmission electron microscope-EDS silicon drift detector wavelength dispersive X-ray detector Introduction By far the most common micro-analytical technique in the failure analysis laboratory is energy dispersive x-ray spectroscopy, known as EDX or EDS. It is commonly...
Abstract
This article provides an overview of the most common micro-analytical technique in the failure analysis laboratory: energy dispersive X-ray spectroscopy (EDS). It discusses the general characteristics, advantages, and disadvantages of some of the X-ray detectors attached to the scanning electron microscope chamber including the lithium-drifted EDS detector, silicon drift detector (SDD), and wavelength dispersive X-ray detector. The article then provides information on qualitative and quantitative X-ray analysis programs followed by a discussion on EDS elemental mapping. The discussion includes a comparison of scanning transmission electron microscope-EDS elemental mapping and mapping with an SDD. A brief section is devoted to the discussion on the artifacts that occur during X-ray mapping.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
... on spectroscopy principles such as optical emission spectroscopy, energy dispersive spectroscopy (EDS), wavelength dispersive spectroscopy, x-ray fluorescence spectroscopy (XRF), and x-ray photoelectron spectroscopy (XPS). Techniques based on diffraction principles such as x-ray diffraction (XRD), electron...
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780093
EISBN: 978-1-62708-268-6
... microanalysis (EPMA) is a materials analysis technique that can be bundled with an SEM. Instead of relying on x-ray energy (as in the EDAX approach), EPMA uses a wavelength-dispersive spectrometer that is approximately an order of magnitude better than EDAX at detecting elemental peaks. That fact...
Abstract
After the fault-tree, a failure-cause identification method has identified potential failure causes and the failure analysis team has prepared a failure mode assessment and assignment (FMA&A). The team knows specifically what to search for when examining components and subassemblies from the failed system. There are numerous techniques and technologies available for examining and analyzing components and subassemblies, which are categorized as follows: optical approaches, dimensional inspection and related approaches, nondestructive test approaches, mechanical and environmental approaches, and chemical and composition analysis for assessing material characteristics. This chapter is a detailed account of the working principle and the steps involved in these techniques and technologies.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460121
EISBN: 978-1-62708-285-3
...) or wavelength-dispersive spectroscopy (WDS). The equipment possesses a lateral resolution of 1 to 50 nm in the secondary electron mode. Energy-dispersive x-ray spectroscopy can provide a rapid multielement analysis for Z > 11, with a detection limit of approximately 200 ppm. Wavelength-dispersive...
Abstract
This chapter elucidates the indispensable role of characterization in the development of cold-sprayed coatings and illustrates some of the common processes used during coatings development. Emphasis is placed on the advanced microstructural characterization techniques that are used in high-pressure cold spray coating characterization, including residual-stress characterization. The chapter includes some preliminary screening of tool hardness and bond adhesion strength, as well as a distinction between surface and bulk characterization techniques and their importance for cold spray coatings. The techniques covered are optical microscopy, X-Ray diffraction, scanning electron microscopy, focused ion beam machining, electron probe microanalysis, transmission electron microscopy, and electron backscattered diffraction. The techniques also include electron channeling contrast imaging, X-Ray photoelectron spectroscopy, X-ray fluorescence, Auger electron spectroscopy, Raman spectroscopy, oxygen analysis, and nanoindentation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... >10 μm <100 ppm Moderate Raman Chemical structure >1 μm >1 μm <0.1 at.% Difficult Note: EDS, energy-dispersive spectroscopy; WDS, wavelength-dispersive spectroscopy; AES, Auger electron spectroscopy; XPS, x-ray photoelectron spectroscopy; TOF-SIMS, time-of-flight secondary...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910475
EISBN: 978-1-62708-250-1
.... Surface Chemical Analysis A variety of analytical techniques and tools have been developed to provide investigators with information regarding the chemical composition of surface constituents ( Table 1 ). Energy-dispersive and wavelength-dispersive x-ray spectrometers are employed as accessories...
Abstract
This chapter discusses the techniques applicable to the diagnosis of corrosion failures, including visual and microscopic examination of corroded surfaces and microstructure; chemical analysis of the metal, corrosion products, and bulk environment; nondestructive evaluation methods; corrosion testing techniques; and mechanical testing techniques. A guide to investigative techniques used in corrosion failure analysis is provided in a table, describing the advantages and limitations of each technique. The principal stages of the investigation and analysis of corrosion failures discussed in the chapter are: collection of background information and sampling; preliminary laboratory examination; detailed metallographic and fractographic examinations; chemical analysis of corrosion products and bulk materials; corrosion testing for quality control; mechanical testing for quality control; and analysis of results and report writing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930039
EISBN: 978-1-62708-359-1
... and microsegregation, and the properties may be governed by the composition in a very local region. A thorough characterization of welds requires techniques with sufficient spatial resolution to characterize their inhomogeneity. Scanning electron microscopy with wavelength or energy dispersive x-ray analysis systems...
Abstract
This article reviews nondestructive and destructive test methods used to characterize welds. The first process of characterization discussed involves information that may be obtained by direct visual inspection and measurement of the weld. An overview of nondestructive evaluation is included that encompasses techniques used to characterize the locations and structure of internal and surface defects, including radiography, ultrasonic testing, and liquid penetrant inspection. The next group of characterization procedures discussed is destructive tests, requiring the removal of specimens from the weld. The third component of weld characterization is the measurement of mechanical and corrosion properties. Following the discussion on the characterization procedures, the second part of this article provides examples of how two particular welds were characterized according to these procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.9781627082532
EISBN: 978-1-62708-253-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900045
EISBN: 978-1-62708-358-4
... extraction ( Ref 7 ). Electron microprobes use single-crystal spectrometers set to diffract only the radiation from a given element, a process referred to as wavelength dispersive spectroscopy (WDS) and which is capable of high-precision chemical analysis. Characteristic x-ray intensity from the chemical...
Abstract
This chapter describes the various phases that form in tool steels, starting from the base of the Fe-C system to the effects of the major alloying elements. The emphasis is on the phases themselves: their chemical compositions, crystal structures, and properties. The chapter also provides general considerations of phases and phase diagrams and the determination of equilibrium phase diagrams. It describes the formation of martensite, characteristics of alloy carbides, and the design of tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610549
EISBN: 978-1-62708-303-4
... microscopy because of the large depth of field and very high magnifications attainable, typically 5000 to 10,000×. In addition, SEMs are often equipped with microanalytical capabilities, for example, energy-dispersive x-ray spectroscopes. Chemical analysis can be helpful in confirming the chemistry...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180151
EISBN: 978-1-62708-256-3
... done with an SEM. An SEM has the advantage over light microscopy because of the large depth of field and very high magnifications attainable, typically 5000 to 10,000×. In addition, SEMs are often equipped with microanalytical capabilities, for example, energy-dispersive x-ray (EDX) spectroscopes...
Abstract
This appendix focuses on procedures, techniques, and precautions associated with the investigation and analysis of metallurgical failures that occur in service. It describes the steps of an orderly failure analysis from collecting and examining samples to performing mechanical and nondestructive tests, preparing and examining fractographs and micrographs, determining failure mode, writing the report, and developing follow-up recommendations. It also examines the fundamental mechanisms of failure, why they occur, and how to identify them by their characteristic features.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130111
EISBN: 978-1-62708-284-6
... according to their energy. This is called energy-dispersive x-ray analysis. The x-ray wavelength corresponds to the presence of a specific element, and its amplitude corresponds to the quantity of such element. This technique allows quantitative characterization of elements within a given phase. Bulk...
Abstract
This chapter briefly outlines some of the basic aspects of failure analysis, describing some of the basic steps and major concerns in conducting a failure analysis. A brief review of failure types from fracture, distortion, wear-assisted failure, and environmentally assisted failure (corrosion) is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060429
EISBN: 978-1-62708-261-7
... to aging in ferrous alloys, natural or artificial ag- 10-10 m, or 0.1 nm (nanometer), sometimes ing in ferrous and nonferrous alloys) or after a used to express small distances such as inter- cold working operation (strain aging). The atomic distances and some wavelengths. change in properties is often...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.9781627082617
EISBN: 978-1-62708-261-7
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110524
EISBN: 978-1-62708-247-1
... are either scribed and broken or diced with a wafer saw. Great care must be taken to not induce damage at the chip edge in many designs, since such damage can subsequently result in defects that will later grow to cause problems. A common chip size is 250 x 350 µm – visible by the unaided eye, but only...
Abstract
Optoelectronic components can be readily classified as active light-emitting components (such as semiconductor lasers and light emitting diodes), electrically active but non-emitting components, and inactive components. This chapter focuses on the first category, and particularly on semiconductor lasers. The discussion begins with the basics of semiconductor lasers and the material science behind some causes of device failure. It then covers some of the common failure mechanisms, highlighting the need to identify failures as wearout or maverick failures. The chapter also covers the capabilities of many key optoelectronic failure analysis tools. The final section describes the common steps that should be followed so as to assure product reliability of optoelectronic components.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.9781627082600
EISBN: 978-1-62708-260-0
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
.... Details of the welding consumables and significant alloying elements are given in Table 4 . Figure 2 shows the average calculated electrochemical impedance spectroscopy (EIS) corrosion rates between 5 and 10 days from a low chloride (0.35 g/L NaCl) test. Welding details for the preferential weld...
Abstract
Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.