Skip Nav Destination
Close Modal
By
Omar Maluf, Luciana Sgarbi Rossino, Camilo Bento Carletti, Celso Roberto Ribeiro, Clever Ricardo Chinaglia ...
Search Results for
void nucleation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 163 Search Results for
void nucleation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140047
EISBN: 978-1-62708-335-5
... by the reduction in effective area by pore volume fraction and by stress concentrations at voids leading to premature failure. Porosity in aluminum is caused by the precipitation of hydrogen from liquid solution or by shrinkage during solidification, and more usually by a combination of these effects...
Abstract
Porosity in aluminum is caused by the precipitation of hydrogen from liquid solution or by shrinkage during solidification, and more usually by a combination of these effects. Nonmetallic inclusions entrained before solidification influence porosity formation and mechanical properties. This chapter describes the causes and control of porosity and inclusions in aluminum castings as well as the combined effects of hydrogen, shrinkage, and inclusions on the properties of aluminum alloys. In addition, it discusses the applications of radiography to reveal internal discontinuities in aluminum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870201
EISBN: 978-1-62708-314-0
... the processability of the final prepreg. During normal mixing operations, air can easily be mixed into the resin. This entrained air can later serve as nucleation sites for voids and porosity. However, some mixing vessels are equipped with seals that allow vacuum degassing during the mixing operation, a practice...
Abstract
This chapter provides an overview of the tools and techniques, as well as some of the underlying theory, that have proven useful for process modeling and simulation. It begins by presenting the framework of a thermoset cure model that accounts for kinetics, viscosity, heat transfer, flow, voids, and residual stress. It then discusses each variable in detail, explaining how it affects the cure process, how it is measured, and how it can be expressed mathematically in the form of a simple model. The discussions throughout the chapter are supported by numerous images, diagrams, and data plots.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
..., As, Sn) Decrease K Ic by temper embrittlement Sulfide inclusions and coarse carbides Decrease K Ic by promoting crack or void nucleation High carbon content (>0.25%) Decrease K Ic by easily nucleating cleavage Twinned martensite Decrease K Ic due to brittleness Martensite...
Abstract
This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130151
EISBN: 978-1-62708-284-6
... these defects, the most important ones are those generated by the interaction of gas and metal that promote the appearance of voids. In general, there are two kinds of voids: those generated by gas, and shrinkage pores. Porosity Caused by Gas One of the factors that must be considered in steel casting...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240265
EISBN: 978-1-62708-251-8
.... Transgranular fractures can occur during creep when the stress levels and strain levels are fairly high. Voids nucleate, usually around inclusions, and then grow and coalesce until fracture occurs. This type of fracture is very similar to ductile fracture modes experienced at room temperature, except...
Abstract
Creep occurs in any metal or alloy at a temperature where atoms become sufficiently mobile to allow the time-dependent rearrangement of structure. This chapter begins with a section on creep curves, covering the three distinct stages: primary, secondary, and tertiary. It then provides information on the stress-rupture test used to measure the time it takes for a metal to fail at a given stress at elevated temperature. The major classes of creep mechanism, namely Nabarro-Herring creep and Coble creep, are then covered. The chapter also provides information on three primary modes of elevated fracture, namely, rupture, transgranular fracture, and intergranular fracture. The next section focuses on some of the metallurgical instabilities caused by overaging, intermetallic phase precipitation, and carbide reactions. Subsequent sections address creep life prediction and creep-fatigue interaction and the approaches to design against creep.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610055
EISBN: 978-1-62708-303-4
... In MVC, voids nucleate (initiate), grow, and coalesce to develop the final fracture surface that is dimpled. The most common process is one of pore (incipient crack) formation at or in a particle, followed by either void growth and linkage or by localized shear band slip deformation in the intervoid...
Abstract
This chapter discusses the causes and effects of ductile and brittle fracture and their key differences. It describes the characteristics of ductile fracture, explaining how microvoids develop and coalesce into larger cavities that are rapidly pulled apart, leaving bowl-shaped voids or dimples on each side of the fracture surface. It includes SEM images showing how the cavities form, how they progress to final failure, and how dimples vary in shape based on loading conditions. The chapter, likewise, describes the characteristics of brittle fracture, explaining why it occurs and how it appears under various levels of magnification. It also discusses the ductile-to-brittle transition observed in steel, the characteristics of intergranular fracture, and the causes of embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... it is not really a creep-dominated failure mode, it will not be considered further in this section. Transgranular fractures can occur during creep when the stress levels and strain levels are fairly high. Voids nucleate, usually around inclusions, and then grow and coalesce until fracture occurs. This type...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030211
EISBN: 978-1-62708-349-2
... taken from ultrathin sections. Transmitted polarized light, 40× objective Fig. 12.4 Fiber nucleation of spherulitic crystal growth in a high-temperature, lightly cross-linked thermoplastic-matrix composite. Micrographs were taken from ultrathin sections of the unidirectional carbon fiber...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This chapter focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780404
EISBN: 978-1-62708-281-5
... on the amount of craze thickening but has been estimated to be approximately 50 to 100% in a well-developed craze section. As the craze thickens, its growth in the lateral dimensions occurs by additional void nucleation at its leading edge. New craze matter is generated at the craze tip as a result...
Abstract
This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis of macroscopic appearance, and the examination and interpretation of the features of fracture surfaces. In addition, the article considers several cases of field failure in various polymers to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400049
EISBN: 978-1-62708-258-7
... (decreasing the solidification distance), increasing the cooling rate during solidification, or using a grain refiner to promote the nucleation of many independent crystals during solidification. These methods will produce finer dendrite arm spacings and shorter diffusion distances. The shorter diffusion...
Abstract
Microstructures can be altered intentionally or unintentionally. In some cases, metallographers must diagnose what may have happened to the steel or cast iron based on the microstructural details. This chapter discusses how microstructure in steels and cast irons can be intentionally altered during heat treatment, solidification, and deformation (hot and cold working). Some specific examples are then shown to illustrate what can go wrong through unintentional changes in microstructure, for example, the loss of carbon from the surface of the steel by the process known as decarburization or the buildup of brittle carbides on the grain boundaries of an austenitic stainless steel by the process known as sensitization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240221
EISBN: 978-1-62708-251-8
... be drawn down to a point before failure, generally referred to as ductile rupture. In most ductile metals, failure occurs by microvoid nucleation and growth. Microvoids form at stress concentrations and are most frequently initiated by second-phase particles, followed by void formation and growth around...
Abstract
Fracture is the separation of a solid body into two or more pieces under the action of stress. Fracture can be classified into two broad categories: ductile fracture and brittle fracture. Beginning with a comparison of these two categories, this chapter discusses the nature and causes of these failure modes. Some body-centered cubic and hexagonal close-packed metals, and steels in particular, exhibit a ductile-to-brittle transition when loaded under impact and the chapter describes the use of notched bar impact testing to determine the temperature at which a normally ductile failure transitions to a brittle failure. The discussion then covers the Griffith theory of brittle fracture and the formulation of fracture mechanics. Procedures for determination of the plane-strain fracture toughness are subsequently covered. Finally, the chapter describes the effects of microstructural variables on fracture toughness of steels, aluminum alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780238
EISBN: 978-1-62708-281-5
... to crack propagation. However, this same material often exhibits a decreased resistance to fatigue crack initiation or flaw inception. The second-phase addition serves as a nucleation site for crazes, voids, or shear bands and results in a decreased threshold for crack inception. For example, HIPS studies...
Abstract
This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information on fractography that provides useful insight into the nature of fracture processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130111
EISBN: 978-1-62708-284-6
...) Selective phase attack Thickness and morphology of corrosion scales May show localized distortion at surface consistent with direction of motion Identify embedded particles Microstructural change typical of overheating Multiple intergranular cracks Voids formed on grain boundaries...
Abstract
This chapter briefly outlines some of the basic aspects of failure analysis, describing some of the basic steps and major concerns in conducting a failure analysis. A brief review of failure types from fracture, distortion, wear-assisted failure, and environmentally assisted failure (corrosion) is also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390007
EISBN: 978-1-62708-459-8
... fields ,” J. Mechanics and Physics of Solids , vol. 17 , pp. 201 – 217 , 1969 . 10.1016/0022-5096(69)90033-7 [53] Thompson R.D. and Hancock J.W. , “ Ductile failure by void nucleation, growth and coalescence ,” Int. J. Fracture , vol. 26 , pp. 99 – 112 , 1984 . 10.1007...
Abstract
This chapter presents a qualitative and quantitative overview of the stresses, strains, forces, and energy associated with metalworking processes and the tribological behavior of metals. It covers key concepts necessary for understanding metalworking tribology, including plastic deformation, yield criteria, flow strength, and the application of flow rules. It explains how to calculate the work involved in deformation processes, how to assess the propensity for fracture, how to determine temperature rise and strain distribution in the workpiece, and how to classify metalworking processes based on related tribology.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860269
EISBN: 978-1-62708-348-5
Abstract
This chapter reviews the concepts of fracture mechanics and their application to materials evaluation and the design of cryogenic structures. Emphasis is placed on an explanation of technology, a review of fracture mechanics testing methods, and a discussion on the many factors contributing to the fracture behavior of materials at cryogenic temperatures. Three approaches of elastic-plastic fracture mechanics are covered, namely the crack opening displacement, the J-integral, and the R-curve methods. The chapter also discusses the influence of thermal and metallurgical effects on toughness at low temperatures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780305
EISBN: 978-1-62708-281-5
... also are described in this article. Molecular Mechanism Glassy Thermoplastics For glassy thermoplastics, the crazing phenomenon is manifest as linear regions of local plastic deformation forming perpendicular to the applied stress. The craze itself is a highly voided, spongy structure...
Abstract
This article discusses the molecular mechanism, environmental criteria, and material optimization of environmental stress crazing (ESC) in glassy thermoplastics, polyethylenes, and nylons. In addition, it provides information on various tests used to determine relative susceptibility to ESC, namely constant tensile load testing and constant-strain testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780204
EISBN: 978-1-62708-281-5
... ). Fig. 6 Model for a craze on a glossy plastic Fracture The brittle fracture of glassy thermoplastics has been the subject of many studies. Several workers have investigated the growth of crazes to gain an insight into the mechanism of crack nucleation and growth. Evidence of void...
Abstract
This article discusses various factors influencing general polymeric behavior, ductile-brittle transitions, crazing, and the brittle fracture of polymeric materials. The discussion covers the effects of environment on glassy thermoplastic, several parametric descriptions of craze initiation, the kinetics of craze growth, and the effect of crazing on toughness of the plastic. In addition, the article provides information on various tests to determine stress-to-craze value, strain-to-craze value, and fracture toughness of the plastic.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
... presents a volatile management problem. If these by-products are not removed prior to the resin gelling or setting up, voids and porosity in the cured matrix will occur. Thus, condensation-curing systems are much more difficult to process than addition-curing systems. Relative characteristics...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090067
EISBN: 978-1-62708-266-2
... ). Experimental evidence exists to support both models. Important earlier models include the pressure theory of Zapffe and Sims ( Ref 3.13 ) and the surface energy theory of Petch and Stables ( Ref 3.14 ). The pressure theory centers around the concept that molecular hydrogen precipitates in preexisting voids...
Abstract
High-strength steels are susceptible to stress-corrosion cracking (SCC) even in moist air. This chapter identifies such steels and the applications where they are typically found. It provides information on crack growth kinetics and crack propagation models in which hydrogen embrittlement is the predominant mechanism. It explains how different application variables affect SCC, including loading mode, state of stress, type of steel, temperature, electrochemical potential, heat treatment, and deformation processes. It also compares SCC characteristics in different high-strength steels and discusses the influence of composition, steelmaking practice, and application environment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
... Ic by promoting crack or void nucleation High carbon content (>0.25%) Decrease K Ic by easily nucleating cleavage Twinned martensite Decrease K Ic due to brittleness Martensite content in quenched steels Increase K Ic Ferrite and pearlite in quenched steels Decrease K...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
1