Skip Nav Destination
Close Modal
Search Results for
vitreous silica
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-19 of 19 Search Results for
vitreous silica
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Stress-Corrosion Cracking of Glasses and Ceramics[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 14.3 Crack velocity as a function of K I for vitreous silica in 1 N KOH (○) and 1 N LiOH (●) (top) and 1 N LiOH (○) and water (●) (bottom). After Ref 14.11
More
Image
in Stress-Corrosion Cracking of Glasses and Ceramics[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 14.2 Crack velocity as a function of pH for soda-lime-silica glass (left) and vitreous silica (right). Note that slopes in high pH are similar to that in water. After Ref 14.10
More
Image
in Mechanical Behavior of Nonmetallic Materials
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 7.5 Environmental subcritical crack growth in glasses. (a) Crack velocity as a function of environment and pH for vitreous silica glass. Source: Ref 7.5 . (b) Soda-lime glass tested at different temperatures. Source: Ref 7.5 . (c) Crack velocity curves for sapphire in moist air (25 °C
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090341
EISBN: 978-1-62708-266-2
.... 14.3 , crack growth data obtained in 1 M LiOH solutions are identical to those obtained in water, while data taken in 1 M NaOH, KOH, and CsOH lie at a lower slope and a higher crack velocity. Fig. 14.2 Crack velocity as a function of pH for soda-lime-silica glass (left) and vitreous silica...
Abstract
Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress concentrations at flaw tips. As a result, even relatively small flaws (20 to 50 μm in radius) can cause glasses and ceramics to fail. This chapter examines the propensity of flaws to grow in glass and ceramic materials exposed to different environments, especially water, at stresses well below those that would produce immediate failure. It describes crack growth mechanisms, explains how to measure crack growth rates and predict time to failure, and provides crack growth data for a number of materials and environments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230093
EISBN: 978-1-62708-298-3
... to that of vitreous silica. Another aspect of the relationship is the existence of polymorphic crystalline forms of beryllium fluoride analogous to the polymorphic forms of silica. The cristobalite and quartz forms of beryllium fluoride are well established [ Roy et al. 1950 , 1953 ]. Beryllium fluoride glass...
Abstract
This chapter reviews the basic chemistry of beryllium metals and compounds, including beryllium hydroxide, beryllium carbonates, beryllium fluoride, and beryllium chloride. It discusses the uses as well as application challenges of various forms of beryllium and includes information on their chemical properties and reactions.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310167
EISBN: 978-1-62708-346-1
...) Polycrystalline tungsten 4000–5000 411 ( ν = 0.26) Vitreous silica 4800–5200 72 ( ν = 0.17) Selection of devices for the instrumented indentation test with values provided by the manufacturers Table 10 Selection of devices for the instrumented indentation test with values provided...
Abstract
Instrumented indentation hardness testing significantly expands on the capabilities of traditional hardness testing. It employs high-resolution instrumentation to continuously control and monitor the loads and displacements of an indenter as it is driven into and withdrawn from a material. The scope of application comprises displacements even smaller than 200 nm (nano range) and forces even up to 30 kN . Mechanical properties are derived from the indentation load-displacement data obtained in simple tests. The chapter presents the elements of contact mechanics that are important for the application of the instrumented indentation test. The test method according to the international standard (ISO 14577) is discussed, and this information is supplemented by information about the testing technique and some example applications. The chapter concludes with a discussion on the extensions of the standard that are expected in the future (estimation of the measurement uncertainty and procedures for the determination of true stress-strain curves).
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
.... 7.5 seem to agree better with the other models shown in Fig. 4.20(a) . Fig. 7.5 Environmental subcritical crack growth in glasses. (a) Crack velocity as a function of environment and pH for vitreous silica glass. Source: Ref 7.5 . (b) Soda-lime glass tested at different temperatures. Source...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.9781627083461
EISBN: 978-1-62708-346-1
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860075
EISBN: 978-1-62708-348-5
..., single-crystal sapphire, copper, tungsten, and fused silica. Standard reference materials. Table 3.3 Standard reference materials. Number Material Temperature (K) Expansion Coefficient (K –1 ) SRM 731 Borosilicate glass 80 – 680 –800 – 2000 × 10 −6 2.6 – 5.3 × 10 −6 SRM...
Abstract
Specific heat and thermal expansion are closely related. Following a discussion on thermal expansion theory, methods of measurement techniques are presented along with their advantages and disadvantages. The results of the measurements are then summarized for three classes of materials: metallics, nonmetallics, and composites. Because predicting thermal expansion values for unmeasured or novel materials is useful, the chapter also describes the means of making educated guesses for low-temperature values. A short discussion on how thermal expansion data can be used is followed by a section describing where such data can be found.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
... not chemically etch, corrode, or mark the metal surface. Abrasive grains generally used with all finishing compounds include: Tripoli and/or silica for finishing of most nonferrous materials and plastics Fused aluminum oxide for finishing of ferrous products Calcined alumina for finishing...
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910363
EISBN: 978-1-62708-250-1
Abstract
Organic coatings (paints and plastic or rubber linings), metallic coatings, and nonmetallic inorganic coatings (conversion coatings, cements, ceramics, and glasses) are used in applications requiring corrosion protection. These coatings and linings may protect substrates by three basic mechanisms: barrier protection, chemical inhibition, and galvanic (sacrificial) protection. This chapter begins with a section on organic coating and linings, providing a detailed account of the steps involved in the coating process, namely, design and selection, surface preparation, application, and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion implantation, and laser processing. The last section focuses on nonmetallic inorganic coatings including ceramic coating materials, conversion coatings, and anodized coatings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... Porcelain enamels are glass coatings applied primarily to products or parts made of sheet steel, cast iron, or aluminum to improve appearance and to protect the metal surface. Porcelain enamels are distinguished from other ceramic coatings on metallic substrates by their predominantly vitreous nature...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Book Chapter
Book: Principles of Brazing
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t51230001
EISBN: 978-1-62708-351-5
... Ceramics, nitride/carbide 2–6 Diamond/silica/carbon fiber –1 to 1 The values given are representative of the most widely used materials, rather than provide absolute limits for the different classes listed. The thermal expansivity will depend not only on elemental composition but also...
Abstract
Brazing and soldering jointly represent one of several methods for joining solid materials. This chapter summarizes the principal characteristics of the various joining methods. It then discusses key parameters of brazing including surface energy and tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials, new phase formations, significance of the joint gap, and the strength of metals. The chapter also describes issues in processing aspects that must be considered when designing a joint, and the health, safety, and environmental aspects of brazing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.9781627083515
EISBN: 978-1-62708-351-5
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440001
EISBN: 978-1-62708-352-2
... Ceramics, glass 6–10 Ceramics, oxide 4–8 Ceramics, porcelain/clay 3–7 Ceramics, nitride/carbide 2–6 Diamond/silica/carbon fiber –1 to 1 The values given are representative of the most widely used materials, rather than provide absolute limits for the different classes listed...
Abstract
Soldering and brazing represent one of several types of methods for joining solid materials. These methods may be classified as mechanical fastening, adhesive bonding, soldering and brazing, welding, and solid-state joining. This chapter summarizes the principal characteristics of these joining methods. It presents a comparison between solders and brazes. Further details on pressure welding and diffusion bonding are also provided. Key parameters of soldering are discussed, including surface energy and surface tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials and intermetallic growth, significance of the joint gap, and the strength of metals. The chapter also examines the principal aspects related to the design and application of soldering processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.9781627083522
EISBN: 978-1-62708-352-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.9781627083485
EISBN: 978-1-62708-348-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9