Skip Nav Destination
Close Modal
Search Results for
vertical winding machine
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 72 Search Results for
vertical winding machine
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 September 2011
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860065
EISBN: 978-1-62708-338-6
... machine system and a vertical winding machine. The chapter provides information on in-plane (polar) winders and several types of creels, namely stationary and no twist, rotating, braking, and combinations thereof. Comprehensive descriptions of mandrel designs used in filament winding are presented in text...
Abstract
This chapter addresses the hardware requirements for filament winding, from elementary processing equipment to more advanced systems. The chapter describes the equipment, defines how it is best used, and presents real-life examples. It describes a helical horizontal filament winding machine system and a vertical winding machine. The chapter provides information on in-plane (polar) winders and several types of creels, namely stationary and no twist, rotating, braking, and combinations thereof. Comprehensive descriptions of mandrel designs used in filament winding are presented in text and illustration. The chapter also reviews process control of filament winding parameters, including for some specialized winding processes and unique component types.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860007
EISBN: 978-1-62708-338-6
... that used a gear box to determine the winding angle and a chain of a given length to define the length of the part to be wound. Figure 2.2 shows an early Entec vertical winding machine used to build a large rocket motor. To make a change to the winding angle, one had to manually adjust the gearbox each...
Abstract
This chapter reviews the development of filament winding systems and the automated processes used in state-of-the-art filament winding facilities. It first provides a description on the early stages of modern filament winding, followed by brief information on the advances of filament winding in the computer age. Then, the chapter discusses the requirements for filament winding in manufacturing oil and gas industry components and in high-volume production of sporting goods, propane tanks, and curing ovens. The chapter concludes with examples of the versatility of filament winding in producing complex parts.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860001
EISBN: 978-1-62708-338-6
... rotation, cross feed, horizontal using two- and three-axis machines with either carriage movement, vertical carriage movement, mechanical or computer controls. The audience wind eye rotation, and wind eye yaw (Fig. 1.1). has changed. Now, most winders have computer controls and at least three axes. Winding...
Abstract
Most filament winding machines now have computer controls and at least three axes. Winding with four axes is increasingly common because the shapes of the products have evolved to include more complexity. The automation used on the winding machine and ancillary components does not eliminate the need for proper fiber handling. This chapter is a primer on modern filament winding equipment and its use, starting with an overview of machine control and then discussing the design and structural analysis of filament wound components such as pressure vessels, pipes, grid structures, deep sea oil platform drill risers, high-speed rotors, and filament-wound preforms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.9781627083386
EISBN: 978-1-62708-338-6
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860081
EISBN: 978-1-62708-338-6
... Abstract The technology of fabricating composite hardware and structures by filament winding has evolved empirically through the development and manufacturing of specific components. This chapter reviews areas of technology used in building composite parts and discusses the processes from which...
Abstract
The technology of fabricating composite hardware and structures by filament winding has evolved empirically through the development and manufacturing of specific components. This chapter reviews areas of technology used in building composite parts and discusses the processes from which the current technology was derived. The discussion covers quality control requirements for composite fabrication technology and cleanliness standards in the workplace. It describes technology developed for specific components, including satellites struts, aircraft hydraulic cylinders, drill pipe, drive shafts, couplings, and cryogenic tubing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860019
EISBN: 978-1-62708-338-6
... and vertical to it, respectively. The letter S 3 represents the in-plane shear strength. For every Y [ Y min , Y eq ], the winding process should result in a dome thickness at least equal to t (d) . A similar analysis can be set up for the cylindrical part ( Fig. 3.4 ). Because this part...
Abstract
This chapter outlines a methodology for the design of cylindrical pressure vessels, with emphasis on the establishment of winding patterns and the interaction between the real fiber bed geometry (finite roving dimensions) and the theoretical one. To highlight the materials-shape/pattern-roving interaction, an outline of the basic principles of pressure vessel design is provided. After a short section on laminate thickness approximation techniques (essential for establishing a range of acceptable roving dimensions), the chapter concludes with an example demonstrating the methodology from an initial set of design parameters up to the final stage, including patterns, roving dimensions, and production time minimization.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
... Fiber placement, shown conceptually in Fig. 5.9 , is a hybrid between filament winding and tape laying. A fiber placement, or tow placement, machine allows individual tows of prepreg to be placed by the head. The tension on the individual tows normally ranges from zero up to about 2 lb (0.9 kg...
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860095
EISBN: 978-1-62708-338-6
... bottles and tubular parts that have been developed as standard test specimens for combined load testing of composites. component testing filament winding laminated composite materials mechanical testing test specimens Introduction This is the sixth effort ( Ref 8.1 – 8.5 ) to chronicle...
Abstract
The objective of mechanical testing of an engineered material is to provide data necessary for the analysis, design, and fabrication of structural components using the material. The testing of filament-wound composite materials offers unique challenges because of the special characteristics of composites. This chapter describes suitable static mechanical test techniques for characterizing laminated composite materials. The approach is to provide recommended techniques, based on consensus opinions of fabricators and users of filament-wound composites, and to survey available techniques that have been used successfully in the field. The chapter describes the effects of various factors on the properties of composite constituents, including fibers, resins, and unidirectional plies. Some aspects of specimen selection are also described. The chapter provides information on pressure bottles and tubular parts that have been developed as standard test specimens for combined load testing of composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780064
EISBN: 978-1-62708-281-5
... the resin has cured, the filament-wound part is removed from the mandrel and machined or assembled as required. Fig. 19 Filament winding Applications for filament-wound composites include gasoline storage tanks, septic tanks, large-diameter drainage pipes, chemical storage systems...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts and includes a discussion on materials and process selection methodology for plastics. The discussion covers the primary plastic processing methods and how each process influences part design and the properties of the plastic part. It also includes a brief description of functional requirements in process selection; an overview of various process effects and how they affect the functions and properties of the part; and the selection of processes for size, shape, and design detail factors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
... and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320011
EISBN: 978-1-62708-332-4
... with the introduction of high-pressure squeeze molding and highly automated high-production molding machines. Human intervention is minimum; labor is required only to set chemically bonded cores or to assist core setting into core fixtures or into core masks. The direction of sand compaction is either vertical...
Abstract
Most iron and steel castings are produced by casting into sand molds. Sand cores are needed primarily to form hollow cavities in castings for collapsibility and ease of cleaning. This chapter begins with an overview of the classification of molding and core-making systems. This is followed by a section discussing the process involved in shell molding, along with its applications. A brief description of the special casting processes is then presented. Next, the chapter discusses the processes involved in core making. Further, it provides an overview of casting manufacturing. Finally, the chapter provides information on the factors that influence a casting facility layout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320157
EISBN: 978-1-62708-332-4
... control arm is a typical example of coining. Malleable iron maintains good impact resistance at low temperatures. High-voltage lines that are exposed to low temperatures and whipping loads due to high winds are made of many malleable iron components. The machinability of malleable iron is excellent...
Abstract
Malleable iron has unique properties that justify its application in the metal working industry. This chapter discusses the advantages, limitations, and mechanical properties of malleable iron; provides a description of the malleabilization process; and presents manufacturing guidelines for malleable iron castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050057
EISBN: 978-1-62708-311-9
... have different machined ID dimensions in the same coil that affect the energy input into the workpiece, similar to the effect that can be accomplished by winding multiturn coils with the turns having different IDs. Table 4.3 shows the efficiency of different types of induction coils. Note...
Abstract
This chapter discusses the design and operating principles of various types of electromagnetic coils. It explains how induction coils are classified based on the direction of the eddy currents they induce in the workpiece and the corresponding orientation, whether longitudinal or transverse, of the associated magnetic flux. It then discusses the factors that influence coil design and selection, including coupling efficiency, frequency, the number and spacing of turns, and the use of flux intensifiers. It also includes images and illustrations of various types of coils and coil geometries for basic as well as special purpose applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040319
EISBN: 978-1-62708-300-3
... ]. The part, located in a die, is rotated and pushed vertically upward while the inclined punch rotates. Thus, the machine is similar to a ring rolling mill that has a lower die cavity that is hydraulically pushed upward ( Fig. 23.23 ). Fig. 23.22 Fundamental principle of axial closed-die rolling...
Abstract
This chapter defines near-net shape forging as the process of forging parts close to their final dimensions such that little machining or only grinding is required as a final step. It then describes the causes of dimensional variations in forging, including die deflection, press deflection, and process inconsistencies, and discusses related innovations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320195
EISBN: 978-1-62708-332-4
... in austempering is minimized by a vertical orientation on the heat-treat racks. Crankshafts produced in grades 2 or 3 are cast, machined, austempered, and finish machined to final size. Figure 10.22 is an illustration of a crankshaft design using ADI. ADI camshafts have been successfully launched in several...
Abstract
Unlike conventional quench and temper heat treatment, austempering is an iron and steel heat-treatment process that enhances mechanical properties through the isothermal transformation of austenite with a minimum amount of quenching stresses. This chapter begins with a discussion of austemperability requirements. Then outlines of austenitizing and austempering cycles and resultant microstructures are presented. This is followed by sections discussing the mechanical properties, advantages, limitations, machinability, process variants, and applications of austempered ductile iron (ADI). Information on the growth of premachined ADI components is also provided. Further, the chapter describes two slightly different systems for austempering: atmospheric-salt and salt-salt systems. Finally, it presents general guidelines for component designers, casting manufacturers, and heat treaters to apply ADI more widely and with improved success.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320003
EISBN: 978-1-62708-332-4
..., the manufacture of cast iron is designed for melting flexibility and batch production. The molten metal from the blast furnace is cast into pigs and shipped to different casting manufacturers for further conversion. Pigs are cast in a pig-casting machine as shown in Fig. 2.3 . The machine consists of many...
Abstract
This chapter provides a brief overview of iron and steel manufacturing and the major equipment involved in the process as well as identifying where casting fits into the overall process. In addition, it provides an overview of cast iron manufacturing, including the processes involved in converting pig iron into cast iron and steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.9781627082808
EISBN: 978-1-62708-280-8
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310001
EISBN: 978-1-62708-346-1
... Development of the drilling hardness of metals on the basis of the loss of weight during drilling with known machining conditions. 1874 Uchatius evaluated the hardness of bronzes by means of a chisel falling from a height of 25 cm (first dynamic hardness testing method). 1882 TU Prague set up an 18...
Abstract
This chapter discusses the history of hardness testing and defines the term hardness. It describes the interrelationship between material structure and hardness and the relationships between hardness and other mechanical material properties. In addition, information on the hardness unit and traceability of the hardness measurement are provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
... or machine compaction. Molds are usually produced in two halves so that the pattern can be easily removed. When these two halves are reassembled, a cavity remains inside the mold in the shape of the pattern. Internal passageways within a casting are formed by the use of cores. Cores are parts made...
Abstract
This chapter covers the practices and procedures used for shape casting metals and alloys. It begins with a review of the factors that influence solidification and contribute to the formation of casting defects. It then describes basic melting methods, including induction, cupola, crucible, and vacuum melting, and common casting techniques such as sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.
1