Skip Nav Destination
Close Modal
Search Results for
velocity-accelerated corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 213 Search Results for
velocity-accelerated corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030292
EISBN: 978-1-62708-282-2
... stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided. petroleum refineries petrochemical plants materials selection...
Abstract
This chapter presents the primary considerations and mechanisms for corrosion and how they are involved in the selection of materials for process equipment in petroleum refineries and petrochemical plants. In addition, specific information on mechanical properties, corrosion, sulfide stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided.
Image
in Corrosion in Petroleum Refining and Petrochemical Operations[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 45 Accelerated high-temperature sulfidic corrosion in 500 mm (20 in.) diameter pipe of vacuum furnace outlet header due to droplet impingement at high vapor velocities
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080235
EISBN: 978-1-62708-304-1
... the metal is impacted by a particle-laden gas stream. Under conditions involving very high particle velocities, such as 100 m/s (328 ft/s) or higher, at elevated temperatures, oxidizing environments (e.g., air) significantly accelerate the erosion-corrosion rates compared with an inert environment...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040010
EISBN: 978-1-62708-428-4
... and accelerated by the high-temperature, high-velocity plasma gas stream ( Fig. 3 ). Torch design and operating parameters are critical in determining the temperature and velocity achieved by the powder particles. Figure 3 Plasma spray system The powder velocities usually achieved in plasma spray...
Abstract
This article provides a brief description of commercially important thermal spray processes and gives examples of applications and application requirements. The processes covered are flame, wire arc, plasma, high-velocity oxyfuel processes, detonation gun, and cold spray methods. Examples are provided of the applications in aerospace, automotive, and medical device industries as well as the use of thermal spray as an additive manufacturing technique.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870219
EISBN: 978-1-62708-299-0
... corrosion products that force metal away from the body of the material and giving rise to a layered appearance. As described in Chapter 4 , exfoliation of aluminum is a problem primarily with the high-strength 2 xxx and 7 xxx alloys used in aircraft. Accelerated laboratory corrosion tests...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
... accelerate crevice attack. It should be noted, however, that tubercles frequently form without the presence of any biological organisms, and the following discussion does not take into account biological effects. Chapter 5 describes the influence of biological organisms and biofilms on corrosion. Fig...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870085
EISBN: 978-1-62708-299-0
... (wear, flow velocity, and/or fatigue) to produce severe attack, usually of a localized nature. Because removal of the protective aluminum oxide film by mechanical processes exposes fresh metal to attack, corrosion occurs at an accelerated rate. Erosion-Corrosion Erosion-corrosion is a general...
Abstract
This chapter explains how mechanical processes, including erosion, cavitation, impingement, and fretting, contribute to the effects of corrosion in aluminum alloys. It describes the two main types of erosion-corrosion and the factors involved in cavitation and liquid impingement erosion along with testing and prevention methods. It also provides information on fretting corrosion and fretting fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
..., there are critical velocities beyond which protective films are swept away and accelerated corrosion attack occurs. This accelerated attack is known as erosion-corrosion. The critical velocity differs greatly from one material to another and can be as low as 0.6 to 0.9 m/sec (2–3 ft/sec). For titanium, the critical...
Abstract
Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces. The chapter discusses the factors that influence the growth and quality of this naturally passivating film, particularly the role of oxidizing and inhibiting species, temperature, and alloying elements. It also discusses the effect of different corrosion processes and environments as well as hydrogen, stress-corrosion cracking, liquid metal embrittlement, and surface treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910193
EISBN: 978-1-62708-250-1
... the corrosion tendency for the specific metal/environment combination. More detailed information regarding the use of inhibitors for corrosion control can be found in Chapter 9 . Velocity/Fluid Flow Rate The influence of fluid flow rate, or fluid velocity, is a complex variable, and its influence...
Abstract
Corrosive environments can be broadly classified as atmospheric, underground/soil, water, acidic, alkaline, and combinations of these. Complicating matters is the fact that there are important variables, for example, pH, temperature, and the presence of biological organisms, that can significantly alter the response of the material in a given environment. This chapter provides a detailed account of all these types of corrosion affecting various industries, pointing out the connection between the characteristics of the corrosive environment that control corrosion behavior, the corrosion characteristics of various metals and materials systems, and the subsequent corrosion response.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030349
EISBN: 978-1-62708-282-2
... of inertial and viscous forces is responsible for accelerating or decelerating metal loss at the fluid/metal interface. Another relevant aspect of flow- or velocity-induced corrosion is erosion-corrosion ( Ref 32 ), which refers to the mechanical removal of corrosion-product films through momentum effects...
Abstract
This chapter examines methods of internal corrosion prediction for multiphase pipelines and details methodologies to perform internal corrosion direct assessment for natural gas pipelines. Further, real-time monitoring techniques for assessing actual corrosion at critical locations are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090271
EISBN: 978-1-62708-266-2
... exhibiting transgranular SCC in methanol can experience accelerated cracking with halogen/halide additions, and inhibitive effects with increasing water content. Stress-corrosion cracking is generally difficult to observe in absolutely pure methanol but becomes favored at HCl levels above 10 −6 M...
Abstract
Titanium alloys are generally resistant to stress-corrosion cracking (SCC), but under certain conditions, the potential for problems exists. This chapter identifies the types of service environments where titanium alloys have exhibited signs of SCC. It begins by describing the nominal composition, designation, and grade of nearly two dozen commercial titanium alloys and the different types of media (including oxidizers, organic compounds, hot salt, and liquid metal) in which SCC has been observed. It discusses the mechanical and metallurgical factors that influence SCC behavior and examines the cracking and fracture mechanisms that appear to be involved. The chapter also includes information on SCC test standards and provides detailed guidelines on how to prevent or mitigate the effects of SCC.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350011
EISBN: 978-1-62708-315-7
.... Corrosive Conditions If oxygen and water are both present, corrosion will normally occur on iron and steel. Rapid corrosion may take place in water, the rate of corrosion being accelerated by several factors such as: (a) the velocity or the acidity of the water, (b) the motion of the metal, (c...
Abstract
This chapter discusses the basic principles of corrosion, explaining how and why it occurs and how it is categorized and dealt with based on the appearance of corrosion damage or the mechanism of attack. It explains where different forms of corrosion are likely to occur and identifies metals likely to be affected. It also discusses the selection and use of protective coatings and the tests that have been developed to measure their effectiveness.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090221
EISBN: 978-1-62708-266-2
... that of oxygen reduction, and thus cupric ion reduction is the dominant reaction in copper-containing solutions. The overall process is autocatalytic in that the corrosion reaction generates more cuprous ions in solution, which subsequently form cupric ions, which in turn accelerate the rate of corrosion...
Abstract
This chapter describes the conditions under which copper-base alloys are susceptible to stress-corrosion cracking (SCC) and some of the environmental factors, such as temperature, pH, and corrosion potential, that influence crack growth and time to failure. It explains that, although most of the literature has been concerned with copper zinc alloys in ammoniacal solutions, there are a number of alloy-environment combinations where SCC has been observed. The chapter discusses several of these cases and the effect of various application parameters, including composition, microstructure, heat treatment, cold working, and stress intensity. It also provides information on stress-corrosion testing, mitigation techniques, and basic cracking mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030247
EISBN: 978-1-62708-282-2
... in corrosion control. Because of the low solubility, rapid precipitation, and mechanical properties of such corrosion products, velocity effects are not as commonly encountered in sour (H 2 S-containing) systems as in sweet (CO 2 -containing) systems. However, this effect can also be influenced...
Abstract
This chapter discusses the particular corrosion problems encountered and the methods of control used in petroleum production and the storage and transportation of oil and gas up to the refinery. It begins by describing those aspects of corrosion that tend to be unique to corrosion as encountered in applications involving oil and gas exploration and production. This is followed by a section reviewing the methods of corrosion control, namely the proper selection of materials, protective coatings, cathodic protection systems, use of inhibitors, use of nonmetallic materials, and control of the environment. The chapter ends with a discussion on the problems encountered and protective measures that are based on the state-of-the-art as practiced daily by corrosion and petroleum engineers and production personnel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030200
EISBN: 978-1-62708-282-2
..., the volume and composition of the produced water and oil will influence the application method and performance of the inhibitor. Oxygen entry into either a sweet or sour corrosion system results in significant corrosion consequences. Corrosion is accelerated, deposition is increased, and inhibitor function...
Abstract
This chapter provides a detailed account of corrosion inhibitors for oil and gas production. It begins by discussing some of the demands of competitive industry on inhibitor formulations. It then describes the varying characteristics of oil wells, gas wells, water injection systems, and pipelines. The following sections provide information on the factors influencing corrosivity of produced fluids and the methods of inhibitor application. The chapter discusses the primary causes of corrosion problems and inhibition in waterfloods and provides an overview of bacteria-induced corrosion. Various laboratory testing methods of corrosion inhibitors and the methods used to monitor corrosion rates and inhibitor effectiveness are also presented. The chapter ends by providing information on quality control of inhibitors and computerization of inhibitor treating programs.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460001
EISBN: 978-1-62708-285-3
... particles in the range of 5 to 100 μm in diameter are accelerated in a supersonic jet of heated gas to high velocities, typically on the order of 300 to 1200 m/s (1000 to 4000 ft/s), and then sprayed onto a hard substrate surface; for example, a metal, ceramic, or glass. If the velocity is high enough...
Abstract
Cold spray is a process technology that, for the first time, enables the rapid deposition of a wide range of metals and some other materials in the solid state at temperatures far below their melting points. This chapter provides an overview of the processes involved in cold spray process technologies, namely high-pressure cold spray (HPCS) and low-pressure cold spray (LPCS), explaining differences of LPCS from HPCS. It summarizes the historical background of the cold spray process. The growing international interest in the cold spray process from the early 2000s is also reviewed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040001
EISBN: 978-1-62708-428-4
... to protect or modify the behavior of a substrate material and/or component. A substantial number of the world’s industries utilize thermal spray for many critical applications. [ 2 ] Key application functions include: Restoration and repair Protection against corrosion Protection against forms...
Abstract
This article provides a high-level overview of thermal spray technologies and their applications and benefits. It is intended to educate members of government, industry, and academia to the benefits of thermal spray technology. The article describes the value of thermal spray technology with examples of application success stories. A few applications critical to thermal spray and market growth are briefly discussed. The article also summarizes the key research areas in thermal spray technology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910497
EISBN: 978-1-62708-250-1
... Corrosion: Understanding the Basics Copyright © 2000 ASM International® J.R. Davis, Editor All rights reserved DOI: 10.31399/asm.tb.cub.t66910497 www.asminternational.org 1APPENDIX Glossary of Corrosion-Related Terms A accelerated corrosion test. Method designed to approximate, in a short time...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.9781627082501
EISBN: 978-1-62708-250-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
... simple static immersion at a controlled temperature to complex testing under combined heat-transfer and velocity conditions. Guidance for conducting laboratory corrosion tests is available in Ref 13 – 17 . After exposure for a specified length of time (generally, a minimum of 1 week), the coupons...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.