Skip Nav Destination
Close Modal
Search Results for
vacuum process
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 580 Search Results for
vacuum process
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Primary Working[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Fig. 9.11 Continuous vacuum annealing is used to process thin strip free from surface contamination. Courtesy of Timet
More
Image
Published: 01 December 1995
Image
Published: 01 November 2010
Image
Published: 01 October 2012
Image
in Aluminum Casting Processes
> Aluminum Alloy Castings<subtitle>Properties, Processes, and Applications</subtitle>
Published: 01 December 2004
Fig. 3.12 Examples of castings produced by the vacuum riserless casting (VRC) process include rocker arms, compressor pistons, connecting rods, trowel handles, valve components, and other parts
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220281
EISBN: 978-1-62708-341-6
... and fabrication. This chapter summarizes some of the special applications of induction heating, including those in the plastics, packaging, electronics, glass, chemical, and metal-finishing industries. The chapter concludes with a discussion of the application of induction heating for vacuum processes...
Abstract
Induction heating has found widespread use as a method to raise the temperature of a metal prior to forming or joining, or to change its metallurgical structure. However, induction heating has specialized capabilities that make it suitable for applications outside of metal treatment and fabrication. This chapter summarizes some of the special applications of induction heating, including those in the plastics, packaging, electronics, glass, chemical, and metal-finishing industries. The chapter concludes with a discussion of the application of induction heating for vacuum processes.
Image
in Processes in Steel Production
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 2.10 Most usual vacuum degassing processes used in steelmaking. Left to right: stream (or ladle-to-mold) degassing; ladle degassing; circulation degassing in RH reactor.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200187
EISBN: 978-1-62708-354-6
... AOD processing becomes a trade-off between cost and alloy quality. Where the cost is justified by difficult applications, AOD processing is a valuable foundry tool. Vacuum Processing Relatively small amounts of steel are vacuum melted and poured because both the melting furnace and the molds...
Abstract
This chapter provides an overview of the types of melting furnaces and refractories for steel casting. It then presents information about arc furnace melting and induction melting cycles. The chapter also describes methods for the removal of phosphorous, the removal of sulfur, and the recovery of elements from slag. It then presents an overview of argon-oxygen-decarburization (AOD) refining and types of ladles. The chapter describes chemical analysis that is performed using either optical emission or x-ray spectrographs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... Abstract This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900089
EISBN: 978-1-62708-350-8
...: The Innovation for Ion Nitriding , Ion Nitriding Proceedings , ASM International , 1987 , p 143 – 147 Process Parameters Cold-Wall Continuous dc Plasma Nitriding Cold-Wall Furnace Plasma Generator Power Pack Heating Elements Vacuum Pump Furnace Thermocouples Gas Flow Work Cooling...
Abstract
Ion nitriding equipment can be categorized into two groups: cold-wall continuous direct current (dc) equipment and hot-wall pulsed dc equipment. This chapter focuses on these two categories along with other important considerations for ion (plasma) nitriding equipment and processing. Other important considerations discussed include the hollow cathode effect, sputter cleaning, furnace loading, pressure/voltage relationships, workpiece masking, and furnace configuration options. The chapter describes five methods of cooling parts from the process temperature to an acceptable exposure temperature after plasma nitriding. The chapter also presents some of the advantages of the pulsed plasma process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220009
EISBN: 978-1-62708-259-4
..., silicon, manganese, and a combination of silicon and manganese. One important consequence of the use of deoxidants is the formation of solid or liquid products from the deoxidation reaction. (Vacuum carbon deoxidation is an exception but is of limited application.) During further processing of the steel...
Abstract
This chapter describes the basic steps in the steelmaking process. It explains how iron is reduced from ore in the liquid state through the classic blast furnace process and in the solid state by direct reduction. It discusses the conversion of iron to steel and the technological advancements that led from open hearth steelmaking to basic oxygen processes and ultimately the electric arc furnace (EAF). It describes the versatility, efficiency, and scalability of the EAF process and its impact on recycling and sustainability. It explains how EAF refining and deoxidation practices have changed over time, and describes secondary refining processes such as degassing, homogenization, rinsing, and remelting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900185
EISBN: 978-1-62708-350-8
... such as vacuum pressure, gas mix, and power input remain the same. By using pulsed dc with a repetition frequency of about 10 kHz, the formation of micro-arcs is suppressed. Courtesy of Plateg GmbH Abstract This chapters reviews the various process, material, and post-treatment problems that can occur...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870119
EISBN: 978-1-62708-314-0
... Abstract This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited...
Abstract
This chapter familiarizes readers with the many and varied thermoset composite fabrication processes and the types of applications for which they were developed. It describes wet lay-up, prepreg lay-up, and low-temperature vacuum bag curing prepreg processes, which are best suited for low-volume, medium-sized and larger parts. It also discusses filament winding and preforming processes (including weaving, knitting, stitching, and braiding) in addition to resin-transfer molding, resin film infusion, and pultrusion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280041
EISBN: 978-1-62708-267-9
... oxygen decarburization melting, vacuum induction melting, vacuum arc remelting, and electroslag remelting. It also addresses related issues such as consumable remelt quality, control anomalies, melt pool characteristics, and melt-related defects, and includes a section that discusses the processes...
Abstract
This chapter discusses the melting and conversion of superalloys and the solidification challenges they present. Superalloys have high solute content which can lead to untreatable defects if they solidify too slowly. These defects, called freckles, are highly detrimental to fatigue life. The chapter explains how and why freckles form as well as how they can be prevented. It describes the criteria for selecting the proper melting method for specific alloys based on melt segregation and chemistry requirements. It compares standard processes, including electric arc furnace/argon oxygen decarburization melting, vacuum induction melting, vacuum arc remelting, and electroslag remelting. It also addresses related issues such as consumable remelt quality, control anomalies, melt pool characteristics, and melt-related defects, and includes a section that discusses the processes involved in converting cast ingots into mill products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410247
EISBN: 978-1-62708-280-8
..., LPPM, and the counter pressure process. Straight cores can be designed as metal core pulls that are suitable for high-pressure processes such as die casting, vacuum casting, and squeeze casting. Processes such as air set sand, SPM, GPM, and die casting are suited for wall thicknesses of equal...
Abstract
This chapter presents guidelines for product designers to choose the best process and alloys while designing a casting. The discussion covers some of the factors pertinent to the selection of the best process for the product function and performance, namely geometric factors, mechanical properties, tooling cost per piece, and overall cost factors. The chapter contains tables listing several markets, products, popular processes, and common alloys and the common processes used for a variety of markets and products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240395
EISBN: 978-1-62708-251-8
... Abstract This chapter discusses the process characteristics, advantages, disadvantages, and applications of various processes involved in surface hardening of steel. These include pack carburizing, liquid carburizing, gas carburizing, vacuum carburizing, plasma carburizing, gas nitriding...
Abstract
This chapter discusses the process characteristics, advantages, disadvantages, and applications of various processes involved in surface hardening of steel. These include pack carburizing, liquid carburizing, gas carburizing, vacuum carburizing, plasma carburizing, gas nitriding, liquid nitriding, carbonitriding, and hardfacing. The chapter describes two surface hardening processes by localized heat treatment: flame hardening and induction hardening. It also briefly summarizes other surface hardening processes, namely, aluminizing, siliconizing, chromizing, titanium carbide coatings, and boronizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250163
EISBN: 978-1-62708-345-4
.../6 x cfh) Integration with cellular manufacturing Difficult Easy Investment cost Average High (a) Atmosphere and vacuum carburizing processes typically are different with respect to when gas additions are introduced, and this has the greatest impact on case uniformity...
Abstract
Gas (atmosphere) carburizing is the de facto standard by which all other surface hardening techniques are measured and is the emphasis of this chapter. Initially, the chapter describes the process and equipment for gas carburizing. This is followed by sections discussing the processes involved in quenching, hardening, tempering, recarburizing, and cold treatment of carburized and quenched gears. Next, the chapter reviews the selection process of materials for carburized gears and provides information on carbon content, properties, and core hardness of gear teeth. The problems associated with carburizing are then covered, followed by the processes involved in heat treat distortion and shot peening of carburized and hardened gears. Information on grinding stock allowance on tooth flanks to compensate for distortion is also provided. The chapter further discusses the applications of carburized and hardened gears. Finally, it reviews vacuum carburizing and compares the attributes of conventional gas carburizing and vacuum carburizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200173
EISBN: 978-1-62708-354-6
... Abstract This chapter discusses the following conventional molding processes for static casting: green sand molding, dry sand molding, vacuum molding, and expendable pattern casting. It also discusses core and mold processes for steel castings. The chapter provides an overview of sand molds...
Abstract
This chapter discusses the following conventional molding processes for static casting: green sand molding, dry sand molding, vacuum molding, and expendable pattern casting. It also discusses core and mold processes for steel castings. The chapter provides an overview of sand molds for large steel castings and a special sand molding process. It describes the following precision processes for static casting: investment casting, ceramic molding, and centrifugal casting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440141
EISBN: 978-1-62708-262-4
... to do is set the instrument for the desired surface carbon content and the gas mixture is controlled accordingly. Vacuum Carburizing Vacuum carburizing is a nonequilibrium, boost-diffuse type carburizing process (boost step to increase carbon content of austenite; diffusion step to provide...
Abstract
This chapter discusses hardening processes that involve changes in surface composition. These case hardening treatments are broadly classified into four groups: carburizing, carbonitriding, nitriding, and nitrocarburizing. Key parameters and operating considerations for each treatment are discussed.
Image
Published: 01 October 2011
Fig. 5.14 Examples of ladle treatments used to refine molten steels. (a) Bottom stirring. (b) Powder injection. (c) Vacuum oxygen decarburization process. (d) Vacuum arc degassing
More