Skip Nav Destination
Close Modal
Search Results for
upperbound method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Book Series
Date
Availability
1-1 of 1 Search Results for
upperbound method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040091
EISBN: 978-1-62708-300-3
... Abstract There are numerous approximate methods, both analytical and numerical, for analyzing forging processes. None are perfect because of the assumptions made to simplify the mathematical approach, but all have merit. This chapter discusses the slab, upperbound, and finite element methods...
Abstract
There are numerous approximate methods, both analytical and numerical, for analyzing forging processes. None are perfect because of the assumptions made to simplify the mathematical approach, but all have merit. This chapter discusses the slab, upperbound, and finite element methods, covering basic principles, implementation, and advantages and disadvantages in various applications.