Skip Nav Destination
Close Modal
Search Results for
understanding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 3429
Search Results for understanding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.9781627082709
EISBN: 978-1-62708-270-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
.... Donachie DOI: 10.31399/asm.tb.stg2.t61280025 Copyright © 2002 ASM International® All rights reserved. www.asminternational.org Chapter 3 Understanding Superalloy Metallurgy Groups, Crystal Structures, and Phases Superalloy Groups. As noted earlier, there are three groups of superalloys (iron-nickel...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.9781627083065
EISBN: 978-1-62708-306-5
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820001
EISBN: 978-1-62708-339-3
... Handbook , Vol 13 , 9th ed. , ASM International , 1987 , p 551 15. Kotecki D.J. , Understanding Delta Ferrite , Weld. Des. Fabr. , Vol 63 ( No. 12 ), 1990 , p 33 – 36 16. Kotecki D.J. , Ferrite Control in Duplex Stainless Steel Weld Metal , Weld. J. , Vol 65 ( No. 10...
Abstract
Corrosion failures of welds can occur even when the proper base metal and filler metal have been selected, industry codes and standards have been followed, and welds have been deposited that possess full weld penetration and have proper shape and contour. This chapter describes some of the general characteristics associated with the corrosion of weldments. The role of macro- and microcompositional variations, a feature common to weldments, is emphasized in this chapter to bring out differences that need to be realized in comparing the corrosion of weldments to that of wrought materials. The discussion covers the factors influencing corrosion of weldments, microstructural features of weld microstructures, various forms of weld corrosion, and welding practice to minimize corrosion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.9781627083058
EISBN: 978-1-62708-305-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420001
EISBN: 978-1-62708-452-9
Abstract
This chapter presents the purpose, design, and function of a gear. It also presents the basic stresses applied to a gear tooth. The chapter provides an overview on the bending strength and characteristics of the gear tooth.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420027
EISBN: 978-1-62708-452-9
... of conditions that exists in, around, and about an object, and has had, is having, or can have an influence on that object, either for betterment or for detriment during its lifetime or its present activity. It is very important, when studying a gear failure, that the examiner obtain an understanding of all...
Abstract
This chapter provides an overview of environmental factors when studying a gear failure. Environmental factors discussed are lubrication, temperature, and mechanical stability.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250001
EISBN: 978-1-62708-345-4
... Gear, Quincy MA Fig. 9 Sections of a spur gear (a) and a spur rack (b) Fig. 10 Sections of a helical gear (a) and a helical rack (b) Types of Gears There is a wide variety of types of gears in existence, each serving a range of functions. In order to understand gearing...
Abstract
This chapter begins with a review of some of the terms used in the gear industry to describe the design of gears and gear geometries. It then discusses the types of gears that operate on parallel shafts, intersecting shafts, and nonparallel and nonintersecting shafts. Next, the processes involved in the selection of gear are discussed, followed by information on the basic stresses applied to a gear tooth, the strength of a gear tooth, and the most widely used gear materials. Further, the chapter briefly reviews gear manufacturing methods and the heat treating processing steps including prehardening processes, through hardening, and case hardening processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.9781627083102
EISBN: 978-1-62708-310-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.9781627083089
EISBN: 978-1-62708-308-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870025
EISBN: 978-1-62708-299-0
... to the microstructure that promote formation of the δ phase (AlLi) were found to reduce the corrosion resistance of the alloy in 3.5% NaCl solution ( Ref 26 ). It was concluded that an understanding of the nucleation and growth of the δ phase is central to an understanding of the corrosion behavior of these alloys. 3...
Abstract
Aluminum generally has excellent resistance to corrosion and gives years of maintenance-free service in natural atmospheres, fresh waters, seawater, many soils and chemicals, and most foods. This chapter explains why aluminum and aluminum alloys are naturally resistant to corrosion and describes the conditions and circumstances under which their natural defenses break down. It discusses the causes and forms of corrosion observed in aluminum alloys and the effect of composition, microstructure, processing history, and environmental variables such as impurities, fluid flow, surface area, pressure, and temperature.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120013
EISBN: 978-1-62708-269-3
Abstract
This chapter covers the basic metallurgy of titanium, explaining how it influences the development of microstructure and the mechanical properties that can be achieved. It describes the nature of each of the four major phases of titanium, the effect of alloying elements on phase transformations, and the formation of secondary phases. The chapter presents and interprets a wide range of micrographs and includes several tables containing composition and tensile property data for many titanium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.9781627083034
EISBN: 978-1-62708-303-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.9781627083072
EISBN: 978-1-62708-307-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.9781627082501
EISBN: 978-1-62708-250-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140005
EISBN: 978-1-62708-264-8
... Abstract In order to understand how the strength of steels is controlled, it is extremely useful to have an elementary understanding of two topics: solutions and phase diagrams. This chapter provides an introduction to these topics with suitable examples. mechanical strength phase...
Abstract
In order to understand how the strength of steels is controlled, it is extremely useful to have an elementary understanding of two topics: solutions and phase diagrams. This chapter provides an introduction to these topics with suitable examples.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780189
EISBN: 978-1-62708-268-6
... Abstract At the conclusion of a systems failure analysis, the people involved should have a much more in-depth understanding of how the system is supposed to work. The analysis should help understand shortfalls in the design, production, testing, and use of the system. The failure analysis team...
Abstract
At the conclusion of a systems failure analysis, the people involved should have a much more in-depth understanding of how the system is supposed to work. The analysis should help understand shortfalls in the design, production, testing, and use of the system. The failure analysis team will have identified other potential failure causes and actions required to preclude future failures. This is valuable knowledge, and it should not be set aside or ignored when the failure analysis team concludes its activities. This chapter is a brief account of the creation of failure analysis libraries, of process guidelines based on previous failure analyses, and of troubleshooting and repair guidelines. Also provided is a listing of the various steps that should be included in a failure analysis procedure.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630071
EISBN: 978-1-62708-270-9
... Abstract In order to understand how various types of single-load fractures are caused, one must understand the forces acting on the metals and also the characteristics of the metals themselves. All fractures are caused by stresses. Stress systems are best studied by examining free-body diagrams...
Abstract
In order to understand how various types of single-load fractures are caused, one must understand the forces acting on the metals and also the characteristics of the metals themselves. All fractures are caused by stresses. Stress systems are best studied by examining free-body diagrams, which are simplified models of complex stress systems. Free-body diagrams of shafts in the pure types of loading (tension, torsion, and compression) are the simplest; they then can be related to more complex types of loading. This chapter discusses the principles of these simplest loading systems in ductile and brittle metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180091
EISBN: 978-1-62708-256-3
... Abstract This chapter describes the nine steps of a failure investigation. The steps add detail to the problem-solving process introduced in Chapter 3. The first five steps are (1) understanding and negotiating the investigation goals, (2) obtaining an understanding of the failure, (3...
Abstract
This chapter describes the nine steps of a failure investigation. The steps add detail to the problem-solving process introduced in Chapter 3. The first five steps are (1) understanding and negotiating the investigation goals, (2) obtaining an understanding of the failure, (3) objectively and clearly identifying all possible root causes, (4) evaluating the likelihood of each root cause, and (5) converging on the most likely root cause(s). Many failure investigations stop at this point, but significant value is provided in the next four steps, which are (6) identifying all possible corrective actions, (7) evaluating each corrective action, (8) selecting the optimal corrective action(s), and (9) evaluating the effectiveness of each corrective action. Each step is discussed in detail with examples along with information on the procedures to be followed and resources needed for the investigation.
1