Skip Nav Destination
Close Modal
Search Results for
underground environments
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 33 Search Results for
underground environments
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910193
EISBN: 978-1-62708-250-1
...Abstract Abstract Corrosive environments can be broadly classified as atmospheric, underground/soil, water, acidic, alkaline, and combinations of these. Complicating matters is the fact that there are important variables, for example, pH, temperature, and the presence of biological organisms...
Abstract
Corrosive environments can be broadly classified as atmospheric, underground/soil, water, acidic, alkaline, and combinations of these. Complicating matters is the fact that there are important variables, for example, pH, temperature, and the presence of biological organisms, that can significantly alter the response of the material in a given environment. This chapter provides a detailed account of all these types of corrosion affecting various industries, pointing out the connection between the characteristics of the corrosive environment that control corrosion behavior, the corrosion characteristics of various metals and materials systems, and the subsequent corrosion response.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030338
EISBN: 978-1-62708-282-2
... to be considered corrosion resistant and undergo a variety of corrosion failure modes/mechanisms in underground environments, including general corrosion, pitting corrosion, and stress-corrosion cracking (SCC). The terms general corrosion and pitting corrosion are used rather loosely when describing...
Abstract
This chapter discusses the most common causes and contributing factors for external corrosion and stress-corrosion cracking on oil and natural gas pipelines, as well as describes procedures for prevention, mitigation, detection, assessment, and repair. The forms of external corrosion covered include differential cell corrosion, microbiologically influenced corrosion, and stray current corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910407
EISBN: 978-1-62708-250-1
... Underground Structures The applications of cathodic protection are quite diverse with respect to the corrosive environment in which it is applied, the industries in which it is applied, and the types of equipment and structures that are cathodically protected. Early applications included the protection...
Abstract
This article describes in detail the process of corrosion control by cathodic and anodic protection. The discussion covers the basic concept of cathodic and anodic protection systems, their types and equipment used, and the advantages, limitations, and applications of these protection systems. The types of cathodic protection systems include sacrificial cathodic protection and impressed-current cathodic protection systems. Some of the technical problems associated with cathodic protection include the effects of stray currents on the corrosion of adjacent metal structures, the effects of the chemical reactions occurring at the surface of the protected structure, and the effects of cathodic protection on coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910001
EISBN: 978-1-62708-250-1
...Abstract Abstract Corrosion can be defined as a chemical or electrochemical reaction between a material, usually a metal, and its environment that produces a deterioration of the material and its properties. This chapter describes the effects and economic impact of corrosion in major industrial...
Abstract
Corrosion can be defined as a chemical or electrochemical reaction between a material, usually a metal, and its environment that produces a deterioration of the material and its properties. This chapter describes the effects and economic impact of corrosion in major industrial plants. The emphasis in this chapter, as well as in other chapters in this book, is on aqueous corrosion, or corrosion in environments where water is present. The chapter describes the classification of various forms of corrosion based on the nature of the corrodent, mechanism of corrosion, and appearance of the corroded metal. It discusses five primary methods of corrosion control, namely, material selection, coatings, inhibitors, cathodic protection, and design. Examples of the opportunities in corrosion control and the means to implement a program to capitalize on those opportunities are presented in a table. The chapter concludes with varied sources of information pertaining to corrosion and corrosion prevention.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030184
EISBN: 978-1-62708-282-2
...-resistivity conditions. Fig. 6 Underground storage tanks with prepackaged sacrificial anodes In sacrificial-anode systems, the maximum voltage between anode and cathode is approximately 1 V, depending on the anode material and the specific environment. Impressed-current systems can use larger...
Abstract
This chapter provides a detailed account of cathodic protection. It begins by discussing the fundamentals of cathodic protection followed by a description of the various types of cathodic protection. It then describes the origins, types, and alleged failures of cathodic protection criteria. This is followed by a section providing information on anode materials that are used for cathodic protection applications. General guidelines for designing the cathodic protection systems are also listed. Finally, the chapter presents various examples on cathodic protection of steel structures. The examples are selected to familiarize the design engineer with the steps to follow in selecting a specific corrosion-control method.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350011
EISBN: 978-1-62708-315-7
.... Electrochemical Corrosion Basics Electrochemical corrosion in metals in a natural environment, whether atmosphere, in water, or underground, is caused by a flow of electricity from one metal to another, or from one part of a metal surface to another part of the same surface where conditions permit the flow...
Abstract
This chapter discusses the basic principles of corrosion, explaining how and why it occurs and how it is categorized and dealt with based on the appearance of corrosion damage or the mechanism of attack. It explains where different forms of corrosion are likely to occur and identifies metals likely to be affected. It also discusses the selection and use of protective coatings and the tests that have been developed to measure their effectiveness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030215
EISBN: 978-1-62708-282-2
..., and well casings. All too often, however, galvanic corrosion caused by contact between dissimilar metals in the same environment is harmful. Examples are: Unprotected underground plain carbon steel pipelines connected to above-ground tanks and other structures that are electrically grounded...
Abstract
This chapter outlines the step-by-step processes by which materials are selected in order to prevent or control corrosion and includes information on materials that are resistant to the various forms of corrosion. The various forms of corrosion covered are general (uniform) corrosion, localized corrosion, galvanic corrosion, intergranular corrosion, stress-corrosion cracking, hydrogen damage, and erosion-corrosion. In addition, the economic importance of cost-effective materials selection is also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940451
EISBN: 978-1-62708-302-7
... for Rubber O-Rings • D 1654, Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments • D 1743, Test Method for Corrosion Preventive Properties of Lubricating Greases • D 1838, Test Method for Copper Strip Corrosion by Liquefied Petroleum (LP) Gases • D 2059...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.9781627082822
EISBN: 978-1-62708-282-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
...Abstract Abstract All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030019
EISBN: 978-1-62708-282-2
... difference between the metals or alloys The nature of the environment The polarization behavior of the metals or alloys The geometric relationship of the component metals or alloys The difference in potential between dissimilar metals or alloys causes electron flow between them when...
Abstract
This chapter provides a brief account of galvanic corrosion, which occurs when a metal or alloy is electrically coupled to another metal or conducting nonmetal in the same electrolyte. It begins by describing the galvanic series of metals and alloys useful for predicting galvanic relationships, followed by a brief section on polarization of metals or alloys. The effects of area, distance, and geometric shapes on galvanic-corrosion behavior are then discussed. Various alloys susceptible to galvanic corrosion are briefly reviewed. The chapter also discusses various modes of attack that lead to galvanic corrosion, along with methods for predicting and controlling galvanic corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870075
EISBN: 978-1-62708-299-0
... of a metal because of electrical contact with a more noble metal or nonmetallic conductor such as graphite in a conductive environment is called galvanic corrosion. The most common examples of galvanic corrosion of aluminum alloys in service occur when they are joined to steel or copper and exposed to a wet...
Abstract
This chapter discusses three related corrosion mechanisms, galvanic, deposition, and stray-current corrosion, explaining why they occur and how they affect the corrosion process. It includes information on testing and prevention methods along with examples of the type of damage associated with these corrosion mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870135
EISBN: 978-1-62708-299-0
..., %, during exposure of indicated length in environment type Seacoast (a) Industrial (b) Rural (c) 6 mo l yr 2 yr 5 yr 6 mo 1 yr 2 yr 5 yr 6 mo l yr 2 yr 5 yr 2024-T351 33 46 52 70 6 9 13 20 1 2 5 11 2024-T851 20 25 26 28 2 5 6 11 0 0 0 6 5456-H116 4...
Abstract
Aluminum products are used extensively in natural atmospheres and in and around water. They are also widely used in building materials and as containers for chemicals and food and beverage products. This chapter discusses the corrosion mechanisms associated with these environments and the influence of various factors and prevention methods. It also includes an extensive amount of data of corrosion rates, corrosion resistance, and changes in mechanical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910427
EISBN: 978-1-62708-250-1
... simulated atmosphere tests salt-spray tests immersion tests CORROSION TESTING AND MONITORING are powerful tools in the flight to control corrosion. Testing provides the necessary data for the evaluation and/or selection of existing, alternative, or new materials in various environments. Monitoring...
Abstract
Corrosion testing and monitoring are powerful tools in the fight to control corrosion. This chapter provides a general overview of three major categories of corrosion tests, namely laboratory tests, pilot-plant tests, and field tests. It begins with brief sections describing the purposes of corrosion tests, the logical steps in a test program, and the preparation and cleaning of test specimens. The focus then moves on to discuss the types and applications of these test categories and the associated evaluation procedures. Excluding electrochemical tests which are addressed separately in this chapter, the other laboratory tests covered under this category are simulated atmosphere tests, salt-spray tests, and immersion tests. Only corrosion testing in the atmosphere is discussed in the section on field tests. Corrosion monitoring techniques are finally considered, covering the characteristics of corrosion monitoring techniques, the factors to be considered in selecting a corrosion-monitoring method, and the strategies in corrosion monitoring.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030005
EISBN: 978-1-62708-282-2
... this occurs in the atmosphere, acid rain is formed, which is a severe environment for metal structures. The movement of the electrons from anodic to cathodic sites in a metal is a result of the difference in Gibbs free energy between the anode (higher level) and the cathode (lower level). This results...
Abstract
This chapter discusses some important factors involved in the atmospheric corrosion of engineering materials. The discussion begins with a description of elements necessary for the operation of a galvanic corrosion cell and corrosion reactions, followed by the types of atmospheric corrosion attack. Some of the atmospheric parameters and their effects on the corrosion of several metals are then reviewed. The following sections provide information on air chemistry, principal pollutants inducing corrosion, thermodynamics as well as models for prediction of atmospheric corrosion, and use of Pourbaix diagrams. The phenomenon of precipitation runoff on the corroded metal surface is then discussed. The chapter also describes the role of microbes or bacteria in the corrosion of metals. It concludes by providing information on the trends in atmospheric corrosion research and methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.9781627082501
EISBN: 978-1-62708-250-1
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090043
EISBN: 978-1-62708-266-2
... environments. It explains how composition and microstructure influence SCC, as do mechanical properties such as strength and fracture toughness and processes such as welding and cold work. It also discusses the role of materials selection and best practices for welding. carbon steel low-alloy steel...
Abstract
This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas environments. It explains how composition and microstructure influence SCC, as do mechanical properties such as strength and fracture toughness and processes such as welding and cold work. It also discusses the role of materials selection and best practices for welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030235
EISBN: 978-1-62708-282-2
... are a compromise based on cost and availability of materials and resources. Designing for corrosion control can only be effective if it is part of the overall design philosophy. There are numerous textbooks, handbooks, and articles on corrosion; several offer choices for specific materials/environment systems...
Abstract
This chapter focuses on various factors to be considered at design stage to minimize corrosion. It begins by providing information on design considerations and general corrosion awareness. This is followed by a description of several factors influencing materials-component failure. Details on design and materials selection, which assist in controlling corrosion, are then provided. The chapter ends with a discussion on the design factors that influence corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030045
EISBN: 978-1-62708-282-2
... environments soured by sulfate-reducing-bacteria (SRB)-produced sulfides Underground pipeline Water-saturated clay-type soils of near-neutral pH with decaying organic matter and a source of SRB Water treatment Heat exchangers and piping Sewage handling and treatment Concrete and reinforced-concrete...
Abstract
This chapter focuses on the effects of microscopic organisms and the by-products they produce on the electrochemical corrosion of metals. It begins by considering the characteristics of organisms that allow them to interact with the corrosion processes, the mechanisms by which organisms can influence the occurrence or rate of corrosion, and the types of corrosion most often influenced by microbes. The chapter then discusses the formation of biofilms on the surface of metals. This is followed by a list of industries most often reported as being affected by microbiological corrosion, along with the organisms usually implicated in the attack. The types of attack that have most commonly been documented are illustrated through generalized case histories for different classes of alloys. The chapter also describes the general approaches to be taken to prevent microbiologically influenced corrosion. It ends with some information on the inhibition of corrosion by the action of bacteria.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910363
EISBN: 978-1-62708-250-1
... important properties. Coatings and linings may protect substrates by three basic mechanisms: Barrier protection Chemical inhibition Galvanic (sacrificial) protection Barrier protection is achieved when coatings completely isolate the substrate from the environment. Chemical inhibition...
Abstract
Organic coatings (paints and plastic or rubber linings), metallic coatings, and nonmetallic inorganic coatings (conversion coatings, cements, ceramics, and glasses) are used in applications requiring corrosion protection. These coatings and linings may protect substrates by three basic mechanisms: barrier protection, chemical inhibition, and galvanic (sacrificial) protection. This chapter begins with a section on organic coating and linings, providing a detailed account of the steps involved in the coating process, namely, design and selection, surface preparation, application, and inspection and quality assurance. The next section discusses the methods by which metals, and in some cases their alloys, can be applied to almost all other metals and alloys: electroplating, electroless plating, hot dipping, thermal spraying, cladding, pack cementation, vapor deposition, ion implantation, and laser processing. The last section focuses on nonmetallic inorganic coatings including ceramic coating materials, conversion coatings, and anodized coatings.