Skip Nav Destination
Close Modal
Search Results for
tungsten alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 486 Search Results for
tungsten alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 2001
Fig. 11 Corrosion rate versus tungsten content for tantalum-tungsten alloys exposed to concentrated H 2 SO 4 at 180 °C (360 °F) and 210 °C (405 °F)
More
Image
Published: 01 December 2001
Image
Published: 01 December 2001
Image
Published: 01 June 2008
Fig. 29.15 Microstructures of cobalt-base wear-resistant alloys. GTAW, gas tungsten arc welding. Source: Ref 10
More
Image
Published: 01 December 2001
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170308
EISBN: 978-1-62708-297-6
... Abstract This article discusses the role of alloying in the production and use of common refractory metals, including molybdenum, tungsten, niobium, tantalum, and rhenium. It provides an overview of each metal and its alloys, describing the compositions, properties, and processing...
Abstract
This article discusses the role of alloying in the production and use of common refractory metals, including molybdenum, tungsten, niobium, tantalum, and rhenium. It provides an overview of each metal and its alloys, describing the compositions, properties, and processing characteristics as well as the effect of alloying elements. It also discusses strengthening mechanisms and, where appropriate, corrosion behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240583
EISBN: 978-1-62708-251-8
... of niobium alloys are given in Table 31.2 . Solid-solution strengthening is greatest for alloying elements that have a large atomic size misfit, a low diffusivity, and a high melting point (for thermal stability). Substitutional alloying additions include tungsten, molybdenum, tantalum, and vanadium...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. These metals are considered refractory because of their high melting points, high-temperature mechanical stability, and resistance to softening at elevated temperatures. This article discusses the composition, properties, fabrication procedures, advantages and disadvantages, and applications of these refractory metals and their alloys. A comparison of some of the properties of the refractory metals with those of iron, copper, and aluminum is given in a table. The article concludes with a brief section on refractory metal protective coatings.
Image
Published: 01 December 2001
Fig. 6 Elevated-temperature tensile strength of dispersion-strengthened tungsten alloys. Source: Ref 4
More
Image
Published: 30 April 2020
Fig. 8.14 Over-sintering occurs as materials pass through peak properties due to microstructure coarsening. This plot gives the tensile strength versus sintering time for a tungsten alloy heated to 1480 °C (2695 °F) for times up to 600 min.
More
Image
Published: 01 November 2013
, copper alloys, magnesium alloys, beryllium, stainless steels, nickel alloys, titanium and titanium alloys, iron and nickel and cobalt superalloys, niobium and niobium alloys, tantalum and tantalum alloys, molybdenum and molybdenum alloys, tungsten alloys Process variations Closed-die forging
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850541
EISBN: 978-1-62708-260-0
..., 0.01 A/cm2 for 5 min (Dickinson). Use cyclic polarity, 0.01 A/cm2 for 5 min (Dickinson). 541 542 METALLOGRAPHY Material Rhenium Rhenium-tungsten alloys Th02-tungsten Tungsten Ruthenium Universal Electrolyte Sat. NaC103 Alumina Sat. K3Fe(CN)6 Alumina 3% H202 Alumina Sat. NaC103 Alumina Sat. K3Fe(CN)6...
Image
Published: 01 December 1984
Figure 3-29 Alloy of cobalt and 15% tungsten etched in nitric acid, hydrogen peroxide, and lactic acid (10:10:80), 250×. (Courtesy of R. D. Buchheit, Battelle Memorial Institute.)
More
Image
Published: 01 December 2006
Fig. 7 Preferential corrosion of autogenous gas tungsten arc weld in alloy B-2 exposed to boiling 60% H 2 SO 4 +8% HCl
More
Image
Published: 01 December 2006
Fig. 14 Corrosion rates for wrought and for gas tungsten arc welded (GTAW) alloy C-22 (UNS N06022). (a) In boiling sulfuric acid/ferric sulfate (ASTM G 28 Method A). (b) In boiling 2.5% HCl solution. Source: Ref 42
More
Image
in Effects of Metallurgical Variables on the Corrosion of High-Nickel Alloys[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 3 Corrosion rates for wrought and for gas tungsten arc welded (GTAW) alloy C-22 (UNS N06022). (a) In boiling sulfuric acid/ferric sulfate (ASTM G28 Method A). (b) In boiling 2.5% HCl solution. Source: Ref 25
More
Image
Published: 01 June 2008
Image
Published: 01 December 2001
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930353
EISBN: 978-1-62708-359-1
... Abstract This article discusses the weldability and fusion weld properties of refractory metal alloys. The alloys discussed include tantalum, niobium, rhenium, molybdenum, and tungsten. molybdenum niobium rhenium tantalum tungsten weldability THE REFRACTORY METALS, which include...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290023
EISBN: 978-1-62708-306-5
... a nonconsumable tungsten alloy electrode and the work metal ( Fig. 2.11 ). The electrode, weld pool, arc, and adjacent heated areas of the workpiece are protected from atmospheric contamination by a gaseous shield. This shield is provided by a stream of gas, usually an inert gas or a mixture of gases. The gas...
Abstract
Arc welding applies to a large and diversified group of welding processes that use an electric arc as the source of heat to melt and join metals. This chapter provides a detailed overview of specific arc welding methods: shielded metal arc welding, flux cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-GMAW welding, electroslag welding, and electrogas welding. The basic characteristics of gases used for shielding during arc welding are briefly discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130541
EISBN: 978-1-62708-284-6
... Osmium (Os) 4.5–4.6 2.5–2.6 Pure Tungsten (W) 0.6–8.7 0.3–4.8 Iron-cobalt-nickel alloys 4.8–5.1 2.7–2.8 Pure Molybdenum (Mo) 5.6 3.1 Pure Arsenic (As) 6.0 3.3 Pure Germanium (Ge) 6.1 3.4 Pure Hafnium (Hf) 5.7–7.0 3.2–3.9 Pure Zirconium (Zr) 6.3–6.6 3.5–3.7 Pure...
Abstract
This appendix is a collection of tables listing coefficients of linear thermal expansion for carbon and low-alloy steels, presenting a summary of thermal expansion, thermal conductivity, and heat capacity; and listing thermal conductivities and specific heats of carbon and low-alloy steels.