Skip Nav Destination
Close Modal
Search Results for
transfer presses
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 404 Search Results for
transfer presses
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Forming of Advanced High-Strength Steels (AHSS)
> Sheet Metal Forming: Processes and Applications
Published: 01 August 2012
Fig. 6.25 Schematic illustrating the die setup in a transfer press and the effect of variation of peak load during stroke and of location on slide tilting. Source: Ref 6.44
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... Abstract This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter...
Abstract
This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter demonstrates the use of the method and compares the results with measured values.
Image
Published: 01 August 2012
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400129
EISBN: 978-1-62708-316-4
... in the die under the load. t p is important in warm and hot forming, in which it affects the heat transfer and die wear; t p is also affected by press stiffness (see the section “ Stiffness of a Press ” in this chapter). Slide Velocity under Pressure (<italic>V</italic><sub>P</sub>) Slide...
Abstract
This chapter discusses the design and application of sheet forming presses. The discussion covers critical variables and design parameters, key components, basic machine configurations, and energy and load requirements. The chapter also discusses time-dependent characteristics, dimensional accuracy, and stiffness as well as die change procedures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400161
EISBN: 978-1-62708-316-4
... process when deformation takes place Die opening, when the upper die moves from BDC toward TDC Part transfer in automated operation or part removal and blank/perform placement into the lower die Fig. 11.2 Various portions of the slide motion in a typical mechanical press with eccentric...
Abstract
This chapter discusses the design and operation of electromechanical servo-drive presses. It begins by comparing the operating flexibility of servo-press drives with that of their conventional counterparts. It then explains the difference between direct-drive and belt and screw-driven servo presses and describes some of the innovations and improvements made possible with high-torque servo motors. The chapter provides examples of how servo presses are used in blanking, warm forming, and other applications and compares the operating characteristics of two 1100-ton presses, one driven by servo motors, the other by a mechanical crank.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500083
EISBN: 978-1-62708-317-1
... heat transfer, die heating techniques, and press systems. It also discusses the effect of forming temperature, punch velocity, blank size, and other parameters on deep drawing processes, making use of both experimental and simulated data. aluminum alloys deep drawing die heating formability...
Abstract
This chapter describes the effect of temperature and strain rate on the mechanical properties and forming characteristics of aluminum and magnesium sheet materials. It discusses the key differences between isothermal and nonisothermal warm forming processes, the factors that affect heat transfer, die heating techniques, and press systems. It also discusses the effect of forming temperature, punch velocity, blank size, and other parameters on deep drawing processes, making use of both experimental and simulated data.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040059
EISBN: 978-1-62708-300-3
..., and the influence of equipment-related parameters such as press speed, contact time, and tooling geometries. forging heat transfer temperature 6.1 Introduction In metal forming processes, both plastic deformation and friction contribute to heat generation. Approximately 90 to 95% of the mechanical...
Abstract
This chapter discusses the factors that influence temperature in forging operations and presents equations that can be used to predict and control it. The discussion covers heat generation and transfer, the effect of metal flow, temperature measurement, testing methods, and the influence of equipment-related parameters such as press speed, contact time, and tooling geometries.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500107
EISBN: 978-1-62708-317-1
... considerable advantages. Transfer Presses A transfer press consists of a single large slide that carries the dies for several forming stages ( Fig. 6.25 ). Fig. 6.25 Schematic illustrating the die setup in a transfer press and the effect of variation of peak load during stroke and of location...
Abstract
This chapter discusses the forming characteristics of dual-phase (DP) and transformation-induced plasticity (TRIP) steels. It begins with a review of the mechanical behavior of advanced high-strength steels (AHSS) and how they respond to stress-strain conditions associated with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses the cause of springback and explains how to predict and compensating for its effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400145
EISBN: 978-1-62708-316-4
... with angular misalignment in the shaft. This will cause ram tipping even in the absence of an eccentric load. Twin-end drives are therefore recommended for presses that do heavy work ( Fig. 10.7c ). Large transfer presses, which are used for heavy forming operations, usually employ a double gear reduction...
Abstract
The load-displacement capabilities of a mechanical press are determined largely by the design of its drive mechanism or, more precisely, the linkage through which the drive motor connects to the slide. This chapter discusses the primary types of linkages used and their effect on force, velocity, and stroke profiles. It begins by describing the simplest drive configuration, a crankshaft that connects directly to the slide, and a variation of it that uses eccentric gears to alter the stroke profile. It then discusses the effect of adding a fixed link, knuckle joint, or toggle to the slider-crank mechanism and how gear ratios, component arrangements, and other design parameters affect slide motion. The chapter also explains how to assess load and energy requirements, time-dependent characteristics, and dimensional accuracy and discusses overload protection, shutheight adjustment, and slide counterbalancing as well.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
... double-acting cylinders and the main cylinder and transfers the load to the extrusion stem. Quick release systems are used to locate the extrusion stem. The moving crosshead is guided by adjustable guide shoes on the press frame guides. Upper locating guide shoes are used to provide better alignment...
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Image
Published: 01 August 2012
Fig. 11.30 Schematic of independent servo-drive die cushion to eliminate pressure surge. The servo-driven hydraulic die cushion transfers a large portion of the cushion energy into the electrical drive system of the press. Source: Ref 11.23
More
Image
Published: 01 December 2006
Fig. 4.49 Temperature variation in the processing of age-hardening aluminum alloys by extrusion. 1, Heating the billet; 2, transfer to the press; 3, extrusion = heating from the deformation = solution heat treatment; 4, section cooling; 5, elevated temperature age hardening. RT, room
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500157
EISBN: 978-1-62708-317-1
... to a temperature of 450 to 510 °C (840 to 950 °F). The hot blanks are then transferred into a hydraulic press and pressurized against an electrically heated top die using warm air, at 1.7 to 3.5 MPa (0.25 to 0.5 ksi). Once the parts are formed, they are transferred to a cooling fixture to bring them down...
Abstract
This chapter describes a sheet metal forming method, called hydroforming, that uses pressurized liquid and a shaped punch or die. It discusses the advantages and disadvantages of the two approaches, the effect of process variations, and tooling modifications intended to reduce sheet bulging. It identifies the factors that influence part quality and explains how finite-element analysis can be used to optimize hydroforming operations. It also discusses the economics of sheet hydroforming and presents several application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400233
EISBN: 978-1-62708-316-4
... without striking the bottom of the die. Metal contact is made at only three points in the cross section: the nose of the male die and the two edges of a V-shaped die opening. air cushion An air-actuated die cushion. air draw A draw operation performed in a single-action press with the blank holder...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.9781627083164
EISBN: 978-1-62708-316-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
..., transfer presses Materials: carbon and alloy steels, aluminum alloys, titanium alloys, high-temperature alloy Process Variations: deep drawing with multiple acting punch, deep drawing with rigid contour punch, rubber forming without blank holder, rubber forming with blank order (Marform process...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500133
EISBN: 978-1-62708-317-1
... (75 °F) is considered for the blank, which is heated to 940 °C (1725 °F). Finite-element modeling resulted in a thickness change from 1.95 to 1.97 mm (0.077 to 0.078 in.) due to thermal expansion. Transport from Oven to Press The heat-transfer coefficients can be entered as a function...
Abstract
Hot stamping is a forming process for ultrahigh-strength steels (UHSS) that maximizes formability while minimizing springback. This chapter covers several aspects of hot stamping, including the methods used, the effect of process variables, and the role of finite-element analysis in process development and die design. It also discusses heating methods, cooling mechanisms, and the role of coatings in preventing oxidation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
..., such as surface topography, contact pressures, temperature difference, and duration of contact [ Snaith et al., 1986 ]. Forging tests were conducted on an industrial press using a test punch with five thermocouples. Several numerical iterations (FEM simulations) were performed by using different heat-transfer...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260029
EISBN: 978-1-62708-336-2
... are given in practical numerical form. Heat transfer mechanisms of extruded sections as they come out of the extrusion press were examined and a model was developed by Pham ( Ref 13 ) to simulate the temperature profile of the extruded sections on the run-out table. The model is based on the assumption...
Abstract
This chapter provides an overview of the thermodynamics of extrusion. It begins by presenting a thermodynamic model of the extrusion process expressed in the form of finite difference equations. It then explains how the model accounts for multiple sources of heat generation, the influence of principal variables on temperature rise, and different types of temperature measurements. It also discusses the benefits of isothermal extrusion and how it achieves consistent mechanical properties in extruded components.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.9781627083423
EISBN: 978-1-62708-342-3
1