Skip Nav Destination
Close Modal
Search Results for
toughened ceramics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 53 Search Results for
toughened ceramics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
.... This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... Abstract This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... applications that utilize their hardness, wear resistance, refractoriness, and high compression strength. They are seldom used in tensile-loaded structures, because they are brittle (with minimal ductility) and very sensitive to stress raisers. (However, ceramics may be toughened with a more ductile second...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... CMCs are designed for enhanced toughness, with little change in strength relative to the monolithic ceramic. In addition, it is important to recognize that while these various toughening mechanisms are active at low to intermediate temperatures, almost all of them can be predicted to degrade during...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... Abstract This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300271
EISBN: 978-1-62708-323-2
.... When many global institutions intensified research into ceramics for tribosystems, it was discovered that adding yttria and other ceramics to zirconia stabilized crack growth and increased toughness. A popular toughened zirconia is tetragonal zirconia polycrystal. There are others...
Abstract
This chapter concerns itself with the tribology of ceramics, cermets, and cemented carbides. It begins by describing the composition and friction and wear behaviors of aluminum oxide, silicon carbide, silicon nitride, and zirconia. It then compares and contrasts the microstructure, properties, and relative merits of cermets with those of cemented carbides.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
..., makes the material more flaw tolerant. The particulates act to deflect cracks from the main propagation path and can absorb energy by a transformation mechanism as well. Whisker-toughened ceramics can be used for a variety of applications, such as heat exchangers, tool bits, and other aerospace...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780238
EISBN: 978-1-62708-281-5
... sensitive to the testing environment than metal or ceramic counterparts. These variables include the stress or strain amplitude of the loading cycle; the mean stress of the cycle; the presence of stress concentrations or initial defects in the component; the frequency, temperature, and environment...
Abstract
This article reviews fatigue test methodologies, provides an overview of general fatigue behavior (crack initiation and propagation) in engineering plastics, and discusses some of the factors affecting the fatigue performance of polymers. In addition, it provides information on fractography that provides useful insight into the nature of fracture processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
..., epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates. physiochemical test...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290243
EISBN: 978-1-62708-306-5
... joining methods in many applications. Many adhesives make superior stress-bearing components. Whether bonding metal to metal, plastic, glass, rubber, ceramic, or another substrate material, adhesives distribute stress load evenly over a broad area, reducing stress on the joint. Since they are applied...
Abstract
Adhesive bonding is a widely used industrial joining process in which a polymeric material is used to join two separate pieces (the adherends or substrates). This chapter begins with a discussion on the advantages and disadvantages of adhesive bonding, followed by a section providing information on the theory of adhesion. The chapter then describes the considerations for designing adhesively bonded joints and for testing or characterizing adhesive materials. The following section covers the characteristics of the most important synthetic adhesive systems and five groups of adhesives, namely structural, hot melt, pressure sensitive, water based, and ultraviolet and electron beam cured. The chapter ends with a discussion on some general guidelines for adhesive bonding and the basic steps in the adhesive bonding process.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... behavior to failure. However, in the case of many of the tougher ceramic composites, these assumptions are frequently incorrect. Note, however, that the biaxial tests, in some cases, have been used to evaluate the possible dependence of strength on stress state in ceramics. For many toughening...
Abstract
This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests on advanced monolithic ceramics and CMCs. These include effects of flaw type and location on tensile tests, separation of flaw populations, design strength and scale effects, and lifetime predictions and environmental effects. The chapter discusses the advantages, problems, and complications of four basic categories of tensile testing techniques as applied to ceramics and CMCs. These categories are true direct uniaxial tensile tests at ambient temperatures, indirect tensile tests, tests where failure is presumed to result from tensile stresses, and high-temperature tensile tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
...-Nicalon-S, Tyranno SA, and Sylramic, are better than those of the earlier nonstoichiometric silicon carbide fibers, their moduli are 50 percent higher and their strain-to-failures are one-third lower, which reduces their ability to toughen ceramic matrices. However, of the commercial fibers currently...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030089
EISBN: 978-1-62708-349-2
... ). Accordingly, for many composite materials that have been properly polished, the reflected-light DIC image will be similar to an image obtained using reflected-light bright-field illumination. Fig. 5.8 Cross section of a polished interlayer-toughened composite that was lightly etched showing height...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This chapter is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The chapter opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The chapter also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
... on metal and ceramic matrix composites, respectively. However, even here the reader is cautioned. The data sets in these volumes, although rigorously controlled, are from many different sources fabricated under widely differing conditions. The bottom line is that there is no substitute for one’s own...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
... is the matrix, either a polymer, metal, or ceramic. Polymers have low strength and stiffness, metals have intermediate strength and stiffness but high ductility, while ceramics have high strength and stiffness but are brittle. The matrix, or continuous phase, performs several critical functions. It maintains...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300363
EISBN: 978-1-62708-323-2
... the start is the materials of construction for the replacement parts. The human body is a cauldron of corrosive fluids. There are a very limited number of materials identified as compatible with use in vivo, including: 316 stainless steel Titanium (several alloys) Cobalt-base alloys Ceramics...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290261
EISBN: 978-1-62708-319-5
... with nonconducting powders such as ceramics, especially as the particle size decreases. Binders are used to intentionally agglomerate powders that do not otherwise ow. air classi cation. A common means to separate speci c size classes of powders by differential settling in a high-velocity air stream or cyclone...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.9781627083195
EISBN: 978-1-62708-319-5
1