Skip Nav Destination
Close Modal
Search Results for
tough-matrix composites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 470
Search Results for tough-matrix composites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030193
EISBN: 978-1-62708-349-2
... composites. It discusses the causes and effects of various failure mechanisms in composite materials. The failure mechanisms covered are brittle-matrix composite failure, tough-matrix composite failure, thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure...
Abstract
As fiber-reinforced polymeric composites continue to be used in more damage-prone environments, it is necessary to understand the response of these materials when subjected to impact from foreign objects. This chapter provides an overview of the analysis methods for impact-damaged composites. It discusses the causes and effects of various failure mechanisms in composite materials. The failure mechanisms covered are brittle-matrix composite failure, tough-matrix composite failure, thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, particle interlayer-toughened composite failure mechanisms, and dispersed-phase, rubber-toughened thermoset-matrix composite failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030177
EISBN: 978-1-62708-349-2
... Abstract The second-generation composite materials were added to increase the strain to failure of the primary phase and/or create a dispersed second phase, thereby enhancing the fracture toughness of the thermosetting matrix. These matrices offered novel design capabilities for composites...
Abstract
The second-generation composite materials were added to increase the strain to failure of the primary phase and/or create a dispersed second phase, thereby enhancing the fracture toughness of the thermosetting matrix. These matrices offered novel design capabilities for composites in a variety of aircraft applications. To improve the damage tolerance of composite materials even further, an engineering approach to toughening was used to modify the highly stressed interlayer with either a tougher material or through the use of preformed particles, leading to the third generation of composite materials. This chapter discusses the development, processes, application, advantages, and disadvantages of dispersed-phase toughening of thermoset matrices. Information on the processes of particle interlayer toughening of composite materials is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... primarily to increase toughness. Some differences in polymer-matrix and ceramic-matrix composites are illustrated in Fig. 11.1 . The toughness increases afforded by ceramic-matrix composites are due to energy-dissipating mechanisms, such as fiber-to-matrix debonding, crack deflection, fiber bridging...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... environments has created a need for tougher, more damage-tolerant polymer-matrix composites. One method to increase composite toughness is through the use of more damage-tolerant fibers made from aramid or glass; however, other performance requirements may not allow the use of these materials for the design...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
... due to fiber microbuckling. The matrix also provides the composite with toughness, damage tolerance, and impact and abrasion resistance. The properties of the matrix also determine the maximum usage temperature, resistance to moisture and fluids, and thermal and oxidative stability. Polymeric...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730115
EISBN: 978-1-62708-283-9
... composites with randomly oriented short fibers. Fiber reinforcement is used to impart stiffness (increased modulus of elasticity) or strength to the matrix. Fiber reinforcement also increases toughness. Fig. 10.1 Several geometric arrangements of fiber reinforcements. Source: Ref 10.1...
Abstract
This chapter discusses the properties and uses of fiber-reinforced composites. It also describes the effect of volume fraction and fiber length.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... are used to strengthen polymer and metal matrix composites, reinforcements in ceramic matrix composites are used primarily to increase toughness. Some differences between polymer matrix and ceramic matrix composites are illustrated in Fig. 21.2 . The toughness increases afforded by ceramic matrix...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310137
EISBN: 978-1-62708-286-0
... of precipitate, and the coherency of the precipitate. The ideal microstructure for the initial matrix is 100% martensite. To the extent there is δ-ferrite or retained austenite, properties, especially yield strength and toughness in the transverse direction, are compromised. The aging temperatures can also...
Abstract
This chapter discusses the composition, alloying characteristics, mechanical properties, corrosion resistance, advantages, limitations, and applications of martensitic, semiaustenitic, and austenitic precipitation-hardenable stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
... and varying the amount added to the matrix. Increasing the reinforcement volume in a composite system generally increases elastic modulus, ultimate strength, and yield strength, but reduces ductility, fracture toughness, thermal expansion, and, in some cases, the density of the composite system. This section...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170234
EISBN: 978-1-62708-297-6
... maraging steels typically have high levels of nickel, cobalt, and molybdenum with little carbon content and how that affects their dimensional stability, fracture toughness, weldability, and resistance to stress-corrosion cracking. maraging steel Composition Fracture toughness Introduction...
Abstract
This article discusses the effects of alloying on the properties and behaviors of maraging steels. It describes how maraging steels differ from conventional steels in that they are strengthened, not by carbon, but by the precipitation of intermetallic compounds. It explains how maraging steels typically have high levels of nickel, cobalt, and molybdenum with little carbon content and how that affects their dimensional stability, fracture toughness, weldability, and resistance to stress-corrosion cracking.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170107
EISBN: 978-1-62708-297-6
... Abstract This article discusses the production, properties, and uses of high-alloy white irons. It explains how the composition and melt are controlled to produce a large volume of eutectic carbides, making these irons particularly hard and resistant to wear, and how the metallic matrix...
Abstract
This article discusses the production, properties, and uses of high-alloy white irons. It explains how the composition and melt are controlled to produce a large volume of eutectic carbides, making these irons particularly hard and resistant to wear, and how the metallic matrix supporting the carbide phase can be adjusted via alloy content and heat treatment to optimize the balance between abrasion resistance and impact toughness. It also describes the effect of alloying elements and inoculants on various properties and behaviors and provides information on commercial alloy grades and applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
... rights reserved DOI: 10.31399/asm.tb.aacppa.t51140299 www.asminternational.org APPENDIX 2 Abbreviations and Symbols A area KIc plane strain fracture toughness, critical value of plane strain- AFS American Foundry Society intensity factor AlMMC aluminum metal matrix composite AMS Aerospace Material Speci...
Abstract
This appendix contains abbreviations and symbols related to aluminum alloy castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550001
EISBN: 978-1-62708-307-2
... and moduli, higher elevated-temperature resistance, lower coefficients of thermal expansion, and, in some cases, better wear resistance. On the down side, they are more expensive than their base metals and have lower toughness. Metal-matrix composites also have some advantages compared to polymer-matrix...
Abstract
Engineers have many materials to choose from when dealing with weight-related design constraints. The list includes aluminum, beryllium, magnesium, and titanium alloys as well as engineering plastics, structural ceramics, and polymer-, metal-, and ceramic-matrix composites. This chapter provides a brief overview of these lightweight materials, discussing their primary advantages along with their properties, behaviors, and limitations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870351
EISBN: 978-1-62708-314-0
.... The most prevalent test is the double cantilever beam test, which measures the Mode I or opening mode of failure. This test is often used to compare the matrix toughness of different resin systems. Reference 1 describes the various fracture toughness tests used for composites. Fig. 13.16 Modes...
Abstract
This chapter discusses composite testing procedures, including tension, compression, shear, flexure, and fracture toughness testing as well as adhesive shear, peel, and honeycomb flatwise tension testing. It also discusses specimen preparation, environmental conditioning, and data analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060247
EISBN: 978-1-62708-261-7
..., chemical composition (carbon equivalent), and the temperature of the eutectoid transformation. Heat treatment can also modify the matrix microstructure, much like that in steels. In gray iron, the as-cast matrix is predominantly pearlite ( Fig. 10.5 ) that consists of alternate layers of ferrite...
Abstract
The commercial relevance of cast irons is best understood in the context of the iron-carbon phase diagram, where their composition places them near the eutectic point, which sheds light on why they melt at lower temperatures than steel and why they can be cast into more intricate shapes. This chapter examines these unique properties and how they are derived. It begins by describing the basic metallurgy of cast iron, focusing on the eutectic reaction. It explains how to control the reaction and thus properties of cast iron by overcooling and inoculation. The chapter also discusses composition, microstructure, heat treatments, and the classification and casting characteristics of white, gray, ductile, malleable, compacted graphite, and special cast irons.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900251
EISBN: 978-1-62708-358-4
... in the annealed microstructure of an M2 steel ( Ref 10 ). Each successive etch with different reagents developed another type of carbide, until the final nital etch revealed the complete array of spheroidized carbides in the matrix of ferrite. The composite array of spheroidized carbides consists of subsets of M...
Abstract
High-speed tool steels have in common the ability to maintain high hardness at elevated temperatures. High speed steels are primarily used for cutting tools that generate heat during high-speed machining. They are designated as group M or group T steels in the AISI classification system, depending on whether the major alloying approach is based on molybdenum or tungsten. This chapter describes the effects of each of the alloying elements and carbon content on the processing, microstructures, and properties of high-speed steels. It discusses the processes involved in the solidification, hot work, annealing, austenitizing for hardening, and tempering of high-speed steels. It also discusses the processes involved in controlling grain size during austenitizing and reviews the characteristics of cooling transformations and other property changes in tempered high-speed steels. Information on multipoint cutting tools is provided. The chapter discusses the applications of high-speed tool steel and factors in selecting high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170573
EISBN: 978-1-62708-297-6
... fracture resistance and thermal conductivities than tool steels. Cermets, on the other hand, are more wear resistant than cemented carbides, but may not be as tough. The performance of either carbide or cermet cutting tools is strongly dependent on composition and microstructure, and the properties...
Abstract
This article discusses the applications, compositions, and properties of cemented carbides and cermets. It explains how alloying elements, grain size, and binder content influence the properties and behaviors of cemented carbides. It also discusses the properties of steel-bonded carbides, or cermets, the various grades available, and the types of applications for which they are suited.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
... Interlaminar shear strength, ksi 10.9 8.70 13.4 13.1 Poisson’s ratio 0.28 0.34 0.25 0.27 The largest publicly accessible database for composite materials is the MIL-HNBK-17 series ( Ref 1 to 5 ). Volume 2 contains databases on polymer matrix systems, and Volumes 4 and 5 contain information...
Abstract
This chapter examines the static, fatigue, and damage tolerance properties of glass, aramid, and carbon fiber systems. It also explains how delaminations, voids, porosity, fiber distortion, and fastener hole defects affect impact resistance and strength.
Image
Published: 01 October 2012
Fig. 9.9 Effect of reinforcement volume fraction on the properties of aluminum metal-matrix composites. (a) The ultimate tensile strength (UTS), tensile yield strength (TYS), and strain-to-failure (ε f ) for 6013/SiC/ xx p-T6. (b) Fracture toughness as a function of SiC volume fraction. (c
More
1