Skip Nav Destination
Close Modal
Search Results for
torsional overload
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91
Search Results for torsional overload
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 1985
Image
Fracture of an ISO 12.9 bolt by ductile torsional overload. (a) Overall vie...
Available to Purchase
in Overview of the Mechanisms of Failure in Heat Treated Steel Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 8 Fracture of an ISO 12.9 bolt by ductile torsional overload. (a) Overall view of fracture. (b) Smooth and fibrous fracture as seen through the SEM. (c) Microvoid coalescence (dimples)
More
Image
in Failure of a Cardon Shaft
> Failure Analysis of Engineering Structures: Methodology and Case Histories
Published: 01 October 2005
Book Chapter
Failure of a Quill Shaft
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270122
EISBN: 978-1-62708-301-0
... microscopes, was flat and shiny with deformation marks and dimples, typical of torsional overload, and signs of severe rubbing on the periphery. Based on their observations, investigators concluded that the quill shaft failed by torsional overload, the source of which could not be determined. quill...
Abstract
The quill shaft in an aircraft engine was found in two pieces following a flameout. One piece was short, straight, and otherwise undamaged; the other piece was bent in several places as was the sleeve that covered it. The facture surface, as viewed under optical and scanning electron microscopes, was flat and shiny with deformation marks and dimples, typical of torsional overload, and signs of severe rubbing on the periphery. Based on their observations, investigators concluded that the quill shaft failed by torsional overload, the source of which could not be determined.
Image
Unidirectional torsion overload in a 1-in.-diam jack shaft, as revealed by ...
Available to PurchasePublished: 01 June 1985
Fig. 3-2. Unidirectional torsion overload in a 1-in.-diam jack shaft, as revealed by magnetic-particle inspection by “Magna-Glo” method. Photographed using a standard “black” light and Polaroid Polacolor-2 Type 58, 4×5 Land film, ASA75, f /11, for one minute.
More
Book Chapter
Failure of a Cardon Shaft
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270124
EISBN: 978-1-62708-301-0
... that a considerable amount of rubbing occurred after the shaft broke. SEM fractography revealed deformation marks and elongated dimples, typical of shear overloads, along with other details. Based on their analysis, investigators concluded that the cardan shaft failed under torsional overload. They also cited a need...
Abstract
A cardon shaft operating in an aircraft engine failed and was taken out and analyzed to determine the cause. A photograph of the broken shaft in the as-received condition shows the location and orientation of the fracture. The fracture surface appeared smooth, indicating that a considerable amount of rubbing occurred after the shaft broke. SEM fractography revealed deformation marks and elongated dimples, typical of shear overloads, along with other details. Based on their analysis, investigators concluded that the cardan shaft failed under torsional overload. They also cited a need for a more detailed examination of the driven end of the shaft.
Book Chapter
Failure of an Aircraft Engine Fuel Pump
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270074
EISBN: 978-1-62708-301-0
..., causing adhesive wear and the welding of slipper pad material onto the surface of a mating cam plate. Excessive friction between the slipper pads and cam plate, in turn, created a torsional overload that caused the camshaft to break. The chapter presents SEM images showing the wear pattern on one...
Abstract
This chapter discusses the key findings of an investigation into the failure of an aircraft engine fuel pump. It explains how investigators came to the conclusion that metal slivers from a heavily worn spring may have interrupted the flow of lubricant to one of the slipper pads, causing adhesive wear and the welding of slipper pad material onto the surface of a mating cam plate. Excessive friction between the slipper pads and cam plate, in turn, created a torsional overload that caused the camshaft to break. The chapter presents SEM images showing the wear pattern on one of the springs along with photographs of the damaged slipper pads and cam plate. It also includes an image of a copper flake found in one of the pistons and discusses the results of qualitative x-ray chemical analysis.
Image
Single-overload torsional fracture on the transverse shear plane of a shaft...
Available to Purchase
in Stress Systems Related to Single-Load Fracture of Ductile and Brittle Metals[1]
> Understanding How Components Fail
Published: 30 November 2013
Fig. 5 Single-overload torsional fracture on the transverse shear plane of a shaft of medium-carbon steel of moderate hardness. Note that the originally straight splines have been twisted in a counterclockwise direction. Final rupture was slightly off center due to a relatively slight bending
More
Image
Single-overload torsional fracture of a shaft of ductile steel similar to t...
Available to Purchase
in Stress Systems Related to Single-Load Fracture of Ductile and Brittle Metals[1]
> Understanding How Components Fail
Published: 30 November 2013
Fig. 6 Single-overload torsional fracture of a shaft of ductile steel similar to that in Fig. 5 . The hole in the center is the lathe center from the original machining on the part
More
Book Chapter
Failure of Shutter Bolts in a Reaction Control Valve in an Aircraft
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270130
EISBN: 978-1-62708-301-0
... aircraft were also found failed. Also, a new bolt had failed during fitment. Investigations revealed that the five bolts had failed by SCC and the new bolt by torsional overload due to excessive torque tightening. Background An aircraft crashed following loss of yaw control while in full airborne...
Abstract
An aircraft crashed following the loss of yaw control in full airborne flight. The subsequent discovery of broken shutter bolts in the rear pitch reaction control valve led to an inspection campaign that found bolt failures of a similar nature in valves on several other aircraft. The bolts were removed and analyzed to determine the mode and cause of failure. Based on the results of macroscopy, scanning electron fractography, metallographic examination, and chemical analysis, the failures were caused by stress corrosion cracking, and in one case, overtightening.
Image
Free-body diagrams showing orientation of normal stresses and shear stresse...
Available to Purchase
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 2.16 Free-body diagrams showing orientation of normal stresses and shear stresses in a shaft under simple (a) tension, (b) torsion, and (c) compression loading, and the single-overload fracture behavior of ductile and brittle materials
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.9781627083010
EISBN: 978-1-62708-301-0
Image
Free-body diagrams showing orientation and elastic distribution of normal (...
Available to Purchase
in Stress Systems Related to Single-Load Fracture of Ductile and Brittle Metals[1]
> Understanding How Components Fail
Published: 30 November 2013
Fig. 1 Free-body diagrams showing orientation and elastic distribution of normal (tensile and compressive) and shear stress components in a shaft under pure (a) tension, (b) torsion, and (c) compression loading. Also shown is single-overload fracture behavior of ductile and brittle materials
More
Book Chapter
Stress Systems Related to Single-Load Fracture of Ductile and Brittle Metals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630071
EISBN: 978-1-62708-270-9
... under pure (a) tension, (b) torsion, and (c) compression loading. Also shown is single-overload fracture behavior of ductile and brittle materials under these loading conditions (bottom diagrams). T, tension. C, compression. Adapted from Ref 1 Tension Loading When a shaft or similar shape...
Abstract
In order to understand how various types of single-load fractures are caused, one must understand the forces acting on the metals and also the characteristics of the metals themselves. All fractures are caused by stresses. Stress systems are best studied by examining free-body diagrams, which are simplified models of complex stress systems. Free-body diagrams of shafts in the pure types of loading (tension, torsion, and compression) are the simplest; they then can be related to more complex types of loading. This chapter discusses the principles of these simplest loading systems in ductile and brittle metals.
Book Chapter
Modes of Gear Failure
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420085
EISBN: 978-1-62708-452-9
... (spalling), thermal fatigue, and shaft fatigue. Tooth bending impact includes tooth shear, tooth chipping, case crushing, and torsional shear. abrasive tooth wear bending fatigue bending impact failure mode analysis gears Although this definition generally has been accepted...
Abstract
This chapter presents a detailed discussion on the three most frequent gear failure modes. These include tooth bending fatigue, tooth bending impact, and abrasive tooth wear. Tooth bending fatigue includes surface contact fatigue (pitting), rolling contact fatigue, contact fatigue (spalling), thermal fatigue, and shaft fatigue. Tooth bending impact includes tooth shear, tooth chipping, case crushing, and torsional shear.
Book Chapter
Causes of Gear Failure
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420129
EISBN: 978-1-62708-452-9
... fracture centering around a nonmetallic inclusion at the case/core interface. Only one tooth spalled. An isolated, random case. Figure 5-3 shows an example of a shaft failure in torsional fatigue along the longitudinal shear plane, with its origin centered along an elongated oxide stringer...
Abstract
This chapter focuses on the causes of gear failure under five major headings. These include basic material, focusing on steel, engineering, focusing on the integration of design, manufacturing, heat treatment, and service application.
Book Chapter
Fatigue Fracture
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630117
EISBN: 978-1-62708-270-9
... Abstract Fatigue fractures are generally considered the most serious type of fracture in machinery parts simply because fatigue fractures can and do occur in normal service, without excessive overloads, and under normal operating conditions. This chapter first discusses the three stages...
Abstract
Fatigue fractures are generally considered the most serious type of fracture in machinery parts simply because fatigue fractures can and do occur in normal service, without excessive overloads, and under normal operating conditions. This chapter first discusses the three stages (initiation, propagation, and final rupture) of fatigue fracture followed by a discussion of its microscopic and macroscopic characteristics. The relationship between stress and strength in fatigue is explained. The next section provides information that may help the uninitiated to appreciate some of the problems of laboratory fatigue testing and of the fatigue process itself. Finally, information on types and statistical aspects of fatigue is provided along with examples.
Book Chapter
Systematic Examination
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420043
EISBN: 978-1-62708-452-9
... parts and to the background knowledge. The analyst may state that a set of gears is grossly overloaded. The field service person may then, for example, take the input shaft and find torsional fatigue cracks by the use of magnetic-particle inspection. Verification of facts by the sharing of knowledge...
Abstract
This chapter discusses field, visual, physical, and metallurgical examinations of gear failures. Physical examinations reviewed include nondestructive testing, including magnetic-particle inspection, tooth characteristic studies, surface hardness testing, ultrasonic testing, nital etching, profilometer measurements, and dimensional checking. Metallurgical examinations reviewed include the cross-sectional hardness survey, macroscopic examination, carbon gradient traverse, chemical analysis, case hardness traverse [microhardness], microscopic examination, and scanning electron microscopy.
Book Chapter
Nonsynchronous and Spiking Vibrations
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 March 2024
DOI: 10.31399/asm.tb.gvar.t59360091
EISBN: 978-1-62708-435-2
... or harmonics close to 21 Hz as the turbine rotates under load, which confirms that the 21 Hz vibration is not induced by any rotational component in the power train. To see if torsional and lateral critical speeds of the power train or any higher-order turbine speed influence the 21 Hz vibration, torsional...
Abstract
Gearbox vibrations are classified as synchronous or nonsynchronous depending on whether or not they are related to the rotational speed of an internal or connected component. This chapter presents a turbogenerator case study that demonstrates the source of nonsynchronous vibration. It then provides a detailed discussion on spiking vibrations and presents design improvement and reduction of spiking vibrations.
Book Chapter
Deformation and Fracture Mechanisms and Static Strength of Metals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
... = 0 (Eq 2.34c) For torsion , τ max = σ 1 = σ max Fig. 2.16 Free-body diagrams showing orientation of normal stresses and shear stresses in a shaft under simple (a) tension, (b) torsion, and (c) compression loading, and the single-overload fracture behavior...
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
1