Skip Nav Destination
Close Modal
Search Results for
tooling applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 786 Search Results for
tooling applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2013
Image
Published: 01 November 2013
Fig. 16 Approximate speed ranges and applications of various cutting and tool materials. Courtesy GTE Valenite Corp. Source: Ref 8
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900001
EISBN: 978-1-62708-358-4
... steels that might also be used for tool applications such as hand tools ( Ref 1 – 3 ). Also, while tool steels may be manufactured with properties for use in nontool applications, such as springs, magnets, bearings, or even structural applications, these uses also are not generally treated in texts...
Abstract
Tool steels are the ferrous alloys used to manufacture tools, dies, and molds that shape, form, and cut other materials, including steels, nonferrous metals, and plastics. This chapter explores the considerations that make tool steels a very special class of steels, the long historical evolution of iron and steel manufacture, including steels for tools, and the development of tool steels as they emerged from the general class of iron and steel products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440191
EISBN: 978-1-62708-262-4
... in composition to carbon and alloy steels that are produced in large tonnages. Then, why pay the higher cost for a tool steel? The only answer is to ask another question: what quality level is required? Many tooling applications can be fulfilled satisfactorily by using lower-priced carbon or alloy grades...
Abstract
Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat treating tool steels, that is, annealing, austenitizing, tempering, and so forth. This chapter focuses on these heat treating processes of tool steels. Classification and approximate compositions and heating treating practices of some principal types of tool steels are provided. The steel types discussed include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300421
EISBN: 978-1-62708-323-2
... H: forging, hot work tools T-M: cutting tools The PM tool steels, such as AISI A11, have taken over many of the tooling applications in which long tool life is a factor. They also have finer alloy carbides in the microstructure, which allows better edge retention in dies and punches...
Abstract
This chapter provides guidelines and insights on the selection of materials, coatings, and treatments for friction and wear applications. It begins with a review of the system nature of tribological effects, the subtleties of friction, and the selection idiosyncrasies of the material systems and lubricants covered in prior chapters. It then presents a systematic approach for selecting tribomaterials, using an automotive fan motor as an example.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... uniform hardness and strength profiles of hardened tool steels, tool surface and near-surface regions are subjected to the most destructive forces, and, almost from the beginning of the widespread application of tool steels, ways to improve surface properties have been evaluated. For example, some...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170573
EISBN: 978-1-62708-297-6
... carbides for machining applications are often coated with hard ceramic coatings for enhanced tooling performance. Cermets The term cermet refers to a composite of a ceramic material with a metallic binder. As defined in the literature of the cutting tool industry, the ceramic phase includes...
Abstract
This article discusses the applications, compositions, and properties of cemented carbides and cermets. It explains how alloying elements, grain size, and binder content influence the properties and behaviors of cemented carbides. It also discusses the properties of steel-bonded carbides, or cermets, the various grades available, and the types of applications for which they are suited.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900007
EISBN: 978-1-62708-358-4
... Abstract The several specific grades or compositions of tool steels have evolved over time and have been organized into useful groupings. This chapter presents the AISI classification system for tool steels, which categorizes tool steels by their alloying, applications, or heat treatment...
Abstract
The several specific grades or compositions of tool steels have evolved over time and have been organized into useful groupings. This chapter presents the AISI classification system for tool steels, which categorizes tool steels by their alloying, applications, or heat treatment, and briefly describes the characteristics of each major group. It discusses selection criteria for tool steels, along with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
... their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage. alloy composition carbon and low-alloy steel friction and wear properties microstructure tool steel wrought product...
Abstract
This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130311
EISBN: 978-1-62708-284-6
..., and high-speed tool steels. chemical composition tool steel failure analysis heat treatment TOOL STEELS are an important class of steels due to their distinct applications and, especially, their specific heat treating issues. Tool steels are used in various industrial applications...
Abstract
This chapter focuses on the failure aspects of tool steels. The discussion covers the classification, chemical composition, main characteristics, and several failures of tool steels and their relation to heat treatment. The tool steels covered are hot work, cold work, plastic mold, and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900181
EISBN: 978-1-62708-358-4
... and discusses the processes involved in the hardening and tempering of tool steels. It also covers the selection criteria and applications of oil-hardening cold-work tool steels. hardenability hardening hardness microstructure oil-hardening cold-work tool steel tempering wear resistance The oil...
Abstract
The oil-hardening cold-work tool steels, designated as group O steels in the AISI classification system, derive their high hardness and wear resistance from high carbon and modest alloy contents. This chapter describes the microstructures and hardenability of oil-hardening tool steels and discusses the processes involved in the hardening and tempering of tool steels. It also covers the selection criteria and applications of oil-hardening cold-work tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060273
EISBN: 978-1-62708-261-7
... Abstract Tool steels are a special class of alloys designed for tool and die applications. High-speed steels are a subset of tool steels designed to operate at high speeds. This chapter describes the composition, properties, heat treatment, and use of wrought and alloyed tool steels, high-speed...
Abstract
Tool steels are a special class of alloys designed for tool and die applications. High-speed steels are a subset of tool steels designed to operate at high speeds. This chapter describes the composition, properties, heat treatment, and use of wrought and alloyed tool steels, high-speed steels, and their counterparts made by powder metallurgy. It includes information on the chemical composition and application range of many commercial tool steels and explains how to apply coatings that reduce friction, thermal conductivity, and wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410621
EISBN: 978-1-62708-265-5
.... However, most tool steels are highly alloyed, and special precautions must be taken throughout processing to achieve the proper balance of alloy carbides in a matrix of tempered martensite for a given tool application. This chapter describes the alloy and process design of the various classes of tool...
Abstract
Tools steels are defined by their wear resistance, hardness, and durability which, in large part, is achieve by the presence of carbide-forming alloys such as chromium, molybdenum, tungsten, and vanadium. This chapter describes the alloying principles employed in various tool steels, including high-speed, water-hardening, shock-resistant, and hot and cold work tool steels. It discusses the influence of alloy design on the evolution of microstructure and properties during solidification, heat treating, and hardening operations. It also describes critical phase transformations and the effects of partitioning, precipitation, segregation, and retained austenite.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870101
EISBN: 978-1-62708-314-0
... review of some of the key principles of Ref 1 can be found in Ref 2 to 4 . 4.1 General Considerations There are many requirements a tool designer must consider when selecting a tooling material and a fabrication process for a given application; however, the number of parts to be made...
Abstract
This chapter discusses the tooling used for autoclave curing, one of the most common composite fabrication processes. The discussion covers curing practices, material selection factors, and design challenges associated with thermal expansion, tool shrinkage, part complexity, and heating and cooling rates. The chapter also includes best practices and recommendations for toolmaking and assembly.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110132
EISBN: 978-1-62708-247-1
... made it a well-adopted tool in the industry. The third part of this article introduces a new method which combines impulse signal and the TDT concept, and discusses a combo TDR and TDT method. Cases studies and application notes are shared and discussed for each technique. Application benefits...
Abstract
Time-domain based characterization methods, mainly time-domain reflectometry (TDR) and time-domain transmissometry (TDT), have been used to locate faults in twisted cables, telegraph lines, and connectors in the electrical and telecommunication industry. This article provides a brief review of conventional TDR and its application limitations to advanced packages in semiconductor industry. The article introduces electro optical terahertz pulse reflectometry (EOTPR) and discusses how its improvements of using high frequency impulse signal addressed application challenges and quickly made it a well-adopted tool in the industry. The third part of this article introduces a new method which combines impulse signal and the TDT concept, and discusses a combo TDR and TDT method. Cases studies and application notes are shared and discussed for each technique. Application benefits and limitations of these techniques (TDR, EOTPR, and combo TDR/TDT) are summarized and compared.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740213
EISBN: 978-1-62708-308-9
...), and polycrystalline diamond (PCD). The different materials vary greatly in wear resistance and toughness. A schematic of their relative application ranges in terms of machining speeds and feed rates is shown in Fig. 15 . Higher machining speeds require tool materials with greater wear resistance, whereas higher feed...
Abstract
This chapter covers the practical aspects of machining, particularly for turning, milling, drilling, and grinding operations. It begins with a discussion on machinability and its impact on quality and cost. It then describes the dimensional and surface finish tolerances that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional machining processes such as electrical discharge, abrasive jet, and hydrodynamic machining, laser and electron beam machining, ultrasonic impact grinding, and electrical discharge wire cutting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... Abstract There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool...
Abstract
There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented carbides. It also describes the methods of applying coatings to cutting tools to improve tool life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310285
EISBN: 978-1-62708-326-3
... Abstract The possible classification for tool steels is their division into four groups according to their final application: hot-worked, cold-worked, plastic mold, and high-speed tool steels. This chapter mainly follows such division by application, but the grade nomenclatures used here...
Abstract
The possible classification for tool steels is their division into four groups according to their final application: hot-worked, cold-worked, plastic mold, and high-speed tool steels. This chapter mainly follows such division by application, but the grade nomenclatures used here are primarily from AISI. It presents the classification of tool steels and discusses the principles and processes of tool steel heat treating, namely normalizing, annealing, hardening, and tempering. Various factors associated with distortion in several tool steels are also covered. The chapter discusses the composition, classification, and properties of unalloyed and low-alloy cold-worked tool steels; medium and high-alloy cold-worked tool steels; and 18% nickel maraging steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
... the original cross section of the tube during bending: Equipment: special tooling, rotary draw of compression bending machines Materials: all ductile materials Process Variations: rotary draw bending, compression bending, ram bending, press bending Applications: manufacturing...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... (geometry and material), the tooling (geometry and material), the conditions at the tool/material interface, the mechanics of plastic deformation, the equipment Cold and Hot Forging: Fundamentals and Applications Taylan Altan, Gracious Ngaile, Gangshu Shen, editors, p 7-15 DOI: 10.31399...
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
1