Skip Nav Destination
Close Modal
Search Results for
titanium sponge
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 61 Search Results for
titanium sponge
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 May 2018
FIG. 9.4 Titanium sponge after cleaning and before compacting for melting. Source: Wikimedia Commons.
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Fig. 8.20 Scanning electron micrograph of porous titanium sponge fines used as starting stock in blended-elemental powder metallurgy
More
Image
Published: 01 December 2000
Image
in History and Extractive Metallurgy[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Image
in History and Extractive Metallurgy[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Fig. 1.12 Schematic of the magnesium reduction process for producing titanium sponge, illustrating alternate means of removing magnesium and MgCl 2 from the sponge
More
Image
in History and Extractive Metallurgy[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Fig. 1.25 Hydrogenated titanium sponge produced by the ADMA Products non-Kroll process. Courtesy of V. Moxson, ADMA Products, Sept 2013.
More
Image
in History and Extractive Metallurgy[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Fig. 1.26 Pie chart of worldwide major titanium sponge manufacturers. Courtesy of P. Dewhurst, Roskill Information Services, Oct 2013
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250129
EISBN: 978-1-62708-287-7
... by William Kroll. Various studies on the properties on titanium and research programs related to the production of titanium sponge and titanium metal products are then described. The chapter concludes with a discussion of titanium use in jet engines. jet engines metal products titanium titanium...
Abstract
This chapter is a detailed account of the history of development of titanium and its modern applications in the aerospace market. It begins by discussing the attempts made to produce titanium metal. This is followed by a discussion on the invention of a process for making titanium by William Kroll. Various studies on the properties on titanium and research programs related to the production of titanium sponge and titanium metal products are then described. The chapter concludes with a discussion of titanium use in jet engines.
Image
Published: 30 April 2020
Fig. 2.16 Sponge titanium powder formed by using a reaction between titanium tetrachloride and molten sodium, with subsequent removal of the NaCl via water immersion
More
Image
Published: 30 April 2020
Fig. 2.3 Sponge nanoscale titanium powder fabricated by hydrogen reduction of titanium tetrachloride in a plasma reactor
More
Image
in Applications of Titanium[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Fig. 15.4 Chinese titanium market in 2011. Domestic demand was 56,000 tons for sponge and 44,500 tons for mill products.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480001
EISBN: 978-1-62708-318-8
...). Titanium has a relatively short production history, with the first commercial quantities of the metal produced in 1950. By 2011, worldwide annual sponge production increased to 186,000 metric tons (excluding U.S. production) and capacity increased to 283,000 metric tons. Production of titanium ores...
Abstract
This chapter provides an overview of the production and use of titanium and its significance as an engineering material. It begins by identifying important deposits and ores and assessing current and future production capacities and how they align with global consumption trends. It then describes the physical and mechanical properties of pure titanium and numerous grades of wrought titanium alloys and explains how they compare with other aerospace materials in terms of processing complexity and cost. The chapter also includes information on extractive metallurgy, current and emerging processes, product forms, and related costs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120025
EISBN: 978-1-62708-269-3
..., which may be remelted several times to achieve the necessary properties. It also discusses the cause of defects and ingot imperfections and the benefits of billet reduction and grain-refinement processes. billets ingots mill products titanium alloys titanium sponge vacuum arc remelting...
Abstract
This chapter describes the basic steps in the production of titanium ingots and their subsequent conversion to standards product forms. It explains how titanium ore is reduced to a spongy residue, then granularized, compacted, and melted (along with alloying additions) to form an ingot, which may be remelted several times to achieve the necessary properties. It also discusses the cause of defects and ingot imperfections and the benefits of billet reduction and grain-refinement processes.
Image
in History and Extractive Metallurgy[1]
> Titanium<subtitle>Physical Metallurgy, Processing, and Applications</subtitle>
Published: 01 January 2015
Fig. 1.13 Schematic description of the sodium reduction scheme for producing titanium sponge evolved from the process developed by Hunter
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120001
EISBN: 978-1-62708-269-3
.... Main producers of rutile are Australia, Sierra Leone, and the Republic of South Africa. Titanium sponge is produced mainly by Russia, Kazakhstan, the United States, Japan, the United Kingdom, and China. Titanium sponge and ingot are available worldwide. The titanium business was in a state of flux...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120047
EISBN: 978-1-62708-269-3
... are limited by the inherently high reactivity of the metal. Thus, nontraditional and, therefore, high-cost processes have been the norm in the industry. Sponge fines of titanium and aluminum-vanadium master alloy powder produced by conventional P/M techniques have been used in the BE process to produce P/M...
Abstract
This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several consolidation and shaping processes along with associated property data.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.9781627082693
EISBN: 978-1-62708-269-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
...) to these engineering metals ( Ref 8.1 – 8.3 ). The decrease in machining required for near-net shapes such as castings and PM components (and consequent reduced-cost components) is discussed in Chapter 1, “History and Extractive Metallurgy,” in this book. Melting The consolidation of titanium sponge...
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240527
EISBN: 978-1-62708-251-8
... and ductility. 28.3 Melting and Primary Fabrication Titanium for ingot production may be either titanium sponge or reclaimed scrap (revert). In both cases, stringent specifications must be met for control of ingot composition. Most important are the hard, brittle, and refractory titanium oxide, titanium...
Abstract
Titanium alloys are classified according to the amount of alpha and beta phase material retained in their structures at room temperature. This chapter discusses the metallurgy, composition, processing, and properties of titanium and its alloys. It provides information on melting, forging, casting, heat treating, and secondary fabrication. It also discusses the advantages and disadvantages of titanium and its alloys in various applications.
Image
Published: 01 December 2000
Fig. 2.1 Some titanium and titanium alloys product forms. (a) Strip. (b) Slab. (c) Billet. (d) Wire. (e) Sponge. (f) Tube. (g) Plate. Courtesy of Teledyne Wah Chang Albany
More
1