Skip Nav Destination
Close Modal
Search Results for
thread cutting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 213 Search Results for
thread cutting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230339
EISBN: 978-1-62708-298-3
... Abstract Beryllium’s machining characteristics are similar to those of heat-treated cast aluminum and chilled cast iron. Like the other materials, it can be turned, milled, drilled, bored, sawed, cut, threaded, tapped, and trepanned with good results. This chapter explains how these machining...
Abstract
Beryllium’s machining characteristics are similar to those of heat-treated cast aluminum and chilled cast iron. Like the other materials, it can be turned, milled, drilled, bored, sawed, cut, threaded, tapped, and trepanned with good results. This chapter explains how these machining operations are conducted and describes the effect of tooling materials, cutting speeds, metal-removal rates, and other variables. It also explains how to assess and remove surface damage caused by machining such as microcracks and twins.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280189
EISBN: 978-1-62708-267-9
... the area being broached is preferred and, in most applications, is mandatory for acceptable results. In some applications, cutting fluids similar to thread cutting oil have been used successfully, but the use of such fluids is usually a compromise, especially when broaching nickel-base or cobalt-base...
Abstract
The qualities that make superalloys excellent engineering materials also make them difficult to machine. This chapter discusses the challenges involved in machining superalloys and the factors that determine machinability. It addresses material removal rates, cutting tool materials, tool life, and practical issues such as set up time, tool changes, and production scheduling. It describes several machining processes, including turning, boring, planing, trepanning, shaping, broaching, drilling, tapping, thread milling, and grinding. It also provides information on toolholders, fixturing, cutting and grinding fluids, and tooling modifications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290207
EISBN: 978-1-62708-306-5
..., the failure may not be discovered until after the fastener is put into service. Thread Production There are basically two methods of producing threads, cut and rolled. The shank on a blank that is to be a cut thread will be full size from the fillet under the head to the end of the bolt. Thread cutting...
Abstract
This chapter presents a comprehensive coverage of mechanical fastening methods. It begins with a discussion on the advantages and disadvantages of mechanical fastening followed by sections providing information on mechanically fastened joints and the selection of the correct fastener system. The chapter then describes important structural fasteners, namely bolts, screws, pins, collar fasteners, rivets, blind fasteners, machine pins, and spring clip fasteners. The following sections describe the process involved in presses, shrink fits, hole generation, and fastener installation. The chapter ends with information on miscellaneous mechanical fastening methods.
Image
in Mechanical Work of Steels—Cold Working
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 12.48 Longitudinal cross section of the threaded region of M5 fasteners. (a) and (c) Rolled thread. (b) and (d) Machined (or cut) thread. The deformation of the “fibers” of the original material causes a large reduction of the fiber spacing close to the thread roots in the case of rolled
More
Image
Published: 01 August 1999
Fig. 27 Top view (a) of cracked aluminum alloy 2024-T351 pitostatic connectors. Arrows indicate cracks. (b) Cross section of one connector showing elongated grains that were cut to form connector threads. 25 x . (c) Cross section showing intergranular cracking with multiple branching in one
More
Image
in Mechanical Work of Steels—Cold Working
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 12.49 Longitudinal cross section of a nut, close to the thread. The alignment of the structure, which is deformed, indicates that the central hole of the nut was made by punching (in the image, from right to left). Afterward, the thread was machined (cut). Etchant: nital.
More
Image
Published: 01 July 2009
Fig. 21.7 Some basic operations performed on turning equipment. (a) Facing. (b) Straight turning. (c) Taper turning. (d) Grooving and cutoff. (e) Threading. (f) Tracer turning. (g) Drilling. (h) Reaming. (i) Boring. Cutting tool in black. Source: ASM 1989
More
Image
in Mechanical Work of Steels—Cold Working
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 12.50 (a) Longitudinal cross section of a bolt machined from AISI 303 stainless steel, subjected to vibration testing. Fatigue cracks are present in the thread root. Large quantity of sulfides (nonmetallic inclusions), since this is a free cutting steel. The structure corresponds
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870307
EISBN: 978-1-62708-314-0
..., and heat damage. It is therefore important to minimize forces and heat generation during machining. During metallic machining, the chips help to remove much of the heat generated during the cutting operation. Because of the much lower thermal conductivity of the fibers (especially glass and aramid), heat...
Abstract
This chapter covers basic machining and assembly operations, with an emphasis on hole preparation for mechanical fasteners. It describes manual, power feed, and automated drilling techniques as well as reaming and countersinking. It discusses various types of fasteners, including rivets, pins, and bolts, along with selection factors and special considerations for composite joints. It also includes information on interference-fit and blind fasteners as well as trimming operations, general assembly considerations, and sealing and painting procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740213
EISBN: 978-1-62708-308-9
..., milling, threading, and grooving; speeds up to 365 m/min (1200 sfm) are common. Ceramic Tools Ceramic tools are inherently more stable than carbide tools at high temperatures (high cutting speeds) but are less fracture resistant, so recent work has focused on improving their fracture toughness...
Abstract
This chapter covers the practical aspects of machining, particularly for turning, milling, drilling, and grinding operations. It begins with a discussion on machinability and its impact on quality and cost. It then describes the dimensional and surface finish tolerances that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional machining processes such as electrical discharge, abrasive jet, and hydrodynamic machining, laser and electron beam machining, ultrasonic impact grinding, and electrical discharge wire cutting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610263
EISBN: 978-1-62708-303-4
... thread Fatigue limit at 10 7 cycles, stress range, ksi 3.8 20 134 Ground 27.5 Rolled 48.0 87.5 Lath-cut 17.0 Rolled 28.5 ¾ 10 141 Ground 29.5 (28.0) (a) Rolled 62.5 (50.0) (a) 87.5 Lath-cut 18.0 (16.8) (a) Ground 16.5 Rolled 34.5 (28.0) (a) 2½ 10...
Abstract
This chapter discusses the fatigue behavior of bolted, riveted, and welded joints. It describes the relative strength of machined and rolled threads and the effect of thread design, preload, and clamping force on the fatigue strength of bolts made from different steels. It explains where fatigue failures are likely to occur in cold-driven rivet and friction joints, and why the fatigue strength of welded joints can be much lower than that of the parent metal, depending on weld shape, joint geometry, discontinuities, and residual stresses. The chapter also explains how to improve the fatigue life of welded joints and discusses the factors that can reduce the fracture toughness of weld metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220403
EISBN: 978-1-62708-259-4
... Longitudinal cross section of the threaded region of M5 fasteners. (a) and (c) Rolled thread. (b) and (d) Machined (or cut) thread. The deformation of the “fibers” of the original material causes a large reduction of the fiber spacing close to the thread roots in the case of rolled threads. In (b), surface...
Abstract
With cold work, mechanical strength (measured either by yield strength or ultimate tensile strength) increases and ductility (measured by elongation, reduction of area, or fracture toughness) normally decreases. This chapter discusses the mechanisms that produce these changes and the factors that influence them. It explains how cold working increases dislocation density and how that affects the stress-strain characteristics of steel, particularly the onset of deformation. It describes the effects of deformation on ferrite, austenite, cementite, and pearlite, and how to optimize their microstructure for various applications through controlled deformation. It also provides information on subcritical annealing, the examination and control of texture, the use of optical microscopy to monitor the effects of recrystallization, and the effect of cold working on threaded fasteners, nails, and filaments used to manufacture cords.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900163
EISBN: 978-1-62708-350-8
... on the painted steel surface. When the steel is heated to the process temperature, loose bristles on the surface will burn off and expose the steel immediately beneath. Nitriding will take place in the area of the burnt-out paint bristles, which can wreak havoc with cutting tools. Some stop-off paints...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... of these increase mold costs. Self-Threading Screws Self-threading screws are an economical means of securing separable joints in plastic. They can be either thread cutting or thread forming. To select the correct self-threading screw for a job, the designer must know which plastic will be used and its...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390456
EISBN: 978-1-62708-459-8
.... This chapter covers the mechanics and tribology of metal cutting processes. It discusses the factors that influence chip formation, including tool and process geometry, cutting forces and speeds, temperature, and stress distribution. It reviews the causes and effects of tool wear and explains how to predict...
Abstract
In contrast to most plastic deformation processes, the shape of a machined component is not uniquely defined by the tooling. Instead, it is affected by complex interactions between tool geometry, material properties, and frictional stresses and is further complicated by tool wear. This chapter covers the mechanics and tribology of metal cutting processes. It discusses the factors that influence chip formation, including tool and process geometry, cutting forces and speeds, temperature, and stress distribution. It reviews the causes and effects of tool wear and explains how to predict and extend the life of cutting tools based on the material of construction, the use of cutting fluids, and the means of lubrication. It presents various methods for evaluating workpiece materials, chip formation, wear, and surface finish in cutting processes such as turning, milling, and drilling. It also discusses the mechanics and tribology of surface grinding and other forms of abrasive machining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250089
EISBN: 978-1-62708-345-4
... after cutting. First, the cutting tool can be threaded and gashed. If so, it is a hob, and the method of cutting is called hobbing. Second, when the cutting tool is shaped like a pinion or a section of a rack, it will be used in a cutting method called shaping. Third, in the milling process, the cutting...
Abstract
Metal removal processes for gear manufacture can be grouped into two general categories: rough machining (or gear cutting) and finishing (or high-precision machining). This chapter discusses the processes involved in machining for bevel and other gears. The chapter describes the type of gear as the major variable and discusses the machining methods best suited to specific conditions. Next, the chapter provides information on gear cutter material and nominal speeds and feeds for gear hobbing. Further, it describes the cutting fluids recommended for gear cutting and presents a comparison of steels for gear cutting. The operating principles of computer numerical control and hobbing machines are also covered. This is followed by sections that discuss the processes involved in grinding, honing, and lapping of gears. Finally, the chapter provides information on the superfinishing of gears.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270130
EISBN: 978-1-62708-301-0
... Features Figure CH28.1 shows the failed bolts. The new bolt that failed during fitment is marked No. 6. Bolts 1 to 5 showed similar features. The fractures were of the brittle type. The fracture origin was generally at the thread root. In all the bolts, the fracture surfaces were found...
Abstract
An aircraft crashed following the loss of yaw control in full airborne flight. The subsequent discovery of broken shutter bolts in the rear pitch reaction control valve led to an inspection campaign that found bolt failures of a similar nature in valves on several other aircraft. The bolts were removed and analyzed to determine the mode and cause of failure. Based on the results of macroscopy, scanning electron fractography, metallographic examination, and chemical analysis, the failures were caused by stress corrosion cracking, and in one case, overtightening.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250001
EISBN: 978-1-62708-345-4
... Nomenclature, Definitions of Terms with Symbols.” Fig. 1 Schematic of typical gear tooth nomenclature Gear cutting table showing various tooth dimensions for different diametral pitches of spur gears Table 1 Gear cutting table showing various tooth dimensions for different diametral pitches...
Abstract
This chapter begins with a review of some of the terms used in the gear industry to describe the design of gears and gear geometries. It then discusses the types of gears that operate on parallel shafts, intersecting shafts, and nonparallel and nonintersecting shafts. Next, the processes involved in the selection of gear are discussed, followed by information on the basic stresses applied to a gear tooth, the strength of a gear tooth, and the most widely used gear materials. Further, the chapter briefly reviews gear manufacturing methods and the heat treating processing steps including prehardening processes, through hardening, and case hardening processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480265
EISBN: 978-1-62708-318-8
..., “Corrosion,” in this book). Residues containing chlorides should not be present on titanium parts subjected to elevated temperature and stress. Therefore, chlorinated cleaning solvents and cutting oils should be avoided or used only if all residues are eliminated prior to a subsequent heating operation...
Abstract
This chapter discusses the various methods used to join titanium alloy assemblies, focusing on welding processes and procedures. It explains how welding alters the structure and properties of titanium and how it is influenced by composition, surface qualities, and other factors. It describes several welding processes, including arc welding, resistance welding, and friction stir welding, and addresses related issues such as welding defects, quality control, and stress relieving. The chapter also covers mechanical fastening techniques along with adhesive bonding and brazing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250129
EISBN: 978-1-62708-345-4
..., and relatively low accuracy of transmitted motion ( Ref 1 ). When the application involves higher values of one or more of these characteristics, forged or cut/machined gears are used. Table 1 lists the tolerances in terms of American Gear Manufacturers Association (AGMA) quality numbers for various gear...
1