Skip Nav Destination
Close Modal
Search Results for
thermomechanical fatigue strength
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 142 Search Results for
thermomechanical fatigue strength
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage. constant-load creep curves creep deformation creep-fatigue interaction elevated-temperature fracture high-temperature fatigue stress...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
... G.R. Lerch B.A. Saltsman J.F. and Arya V.K, , “Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs),” STP 1186, American Society for Testing and Materials , 1993 , p 176 – 194 10.1520/STP24256S 9.3 Lerch B.A...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
...</italic> correlations for thermomechanical fatigue (TMF) strain-hold cycling for <italic>y = A</italic>′<italic>(</italic>Δε<sub><italic>T</italic></sub><italic>)</italic><sup>α</sup><italic>(</italic>δ<italic>t)m</italic> for 2¼Cr-1Mo steel, postweld, heat treated condition Table 6.1 Constants for K ij and F...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240527
EISBN: 978-1-62708-251-8
... strengths vary from 480 MPa (70 ksi) for some grades of commercial titanium to approximately 1100 MPa (160 ksi) for structural alloys. In addition to their static strength advantage, titanium alloys have much better fatigue strength than the other lightweight alloys, such as those of aluminum and magnesium...
Abstract
Titanium alloys are classified according to the amount of alpha and beta phase material retained in their structures at room temperature. This chapter discusses the metallurgy, composition, processing, and properties of titanium and its alloys. It provides information on melting, forging, casting, heat treating, and secondary fabrication. It also discusses the advantages and disadvantages of titanium and its alloys in various applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
...-fatigue life for Udimet 520 and Udimet 710 (based on Ref 64 ). Fig. 9.40. Gamma-prime overaging and associated loss of creep strength in Udimet 710 tested at 845 °C and 350 MPa (1555 °F and 50 ksi) ( Ref 70 ; courtesy of P. Lowden, Liburdi Engineering, Ltd., Burlington, Canada). Top: New creep...
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480113
EISBN: 978-1-62708-318-8
..., and ductility as well as creep, fatigue strength, and fatigue crack growth rate. It also discusses the influence of other titanium phases and the properties of titanium-based intermetallic compounds, metal-matrix composites, and shape-memory alloys. alloy composition alpha titanium alloys alpha-beta...
Abstract
This chapter discusses the factors that govern the mechanical properties of titanium, beginning with the morphology of the alpha phase. It explains that the shape of the alpha phase has a significant effect on many properties, including hardness, tensile strength, toughness, and ductility as well as creep, fatigue strength, and fatigue crack growth rate. It also discusses the influence of other titanium phases and the properties of titanium-based intermetallic compounds, metal-matrix composites, and shape-memory alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120095
EISBN: 978-1-62708-269-3
... on tensile and yield strength, fracture toughness, hardness, ductility, and creep and fatigue behaviors. The chapter covers wrought, cast, and powder metal titanium alloys and contains an extensive amount of property data. aging alloy composition cast titanium alloys creep properties fatigue...
Abstract
This chapter examines the process, structure, and property relationships in titanium alloys. It provides information on microstructures and strengthening mechanisms, the role of alloy and interstitial elements, and the effect of composition, processing, and surface treatments on tensile and yield strength, fracture toughness, hardness, ductility, and creep and fatigue behaviors. The chapter covers wrought, cast, and powder metal titanium alloys and contains an extensive amount of property data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
...Material constants used in oxidation-creep-thermomechanical fatigue model Table 8.1 Material constants used in oxidation-creep-thermomechanical fatigue model Material constants used in oxidation damage term a ′ 0.75 β 1.5 B 6.93 × 10 −3 s −0.5 δ 0 2.16 × 10 −10 μm...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610209
EISBN: 978-1-62708-303-4
... failure conditions, tensile strength and yield strength are usually insufficient requirements for design of fracture-resistant structures. Strength by itself may not be sufficient if toughness, resistance to corrosion, stress corrosion, or fatigue are reduced too much in achieving high strength...
Abstract
This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870267
EISBN: 978-1-62708-344-7
... Hold-time effects on crack growth at 538 °C (1000 °F) for Inconel 718. Source: Ref 11.100 Fig. 11.86 Apparent fracture toughness of 0.056 in. Inconel 718 sheet at 538 °C (1000 °F). Source: Ref 11.100 Fig. 11.9 Fatigue strength as a function of theoretical stress concentration...
Abstract
This chapter is largely a compendium of best practices and procedures for minimizing the effects of fatigue. It explains how to make products more resistant to fatigue by choosing the right materials and manufacturing processes, avoiding geometries and features that concentrate strains, preventing or removing surface damage, and by inducing compressive mean stresses that prolong fatigue life. It also discusses the use of property conditioning and restoration treatments, the benefits of interference fits and processes such as coaxing, the effects of assembly damage and operating overload, the importance of surface cleanliness and finish, and the role of inspection, testing, replacement, and repair in safe-life and fail-safe designs. Examples highlighting the benefits and potential pitfalls of proof loading tests are included as well.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490111
EISBN: 978-1-62708-340-9
.... Terenishi H. and McEvily A.J. , in Proceedings of International Conference on Low Cycle Fatigue Strength and Elastic-Plastic Behavior of Materials , DVM , Stuttgart , 1979 , p 25 20. Miller D.A. , Priest R.H. , and Ellison E.G. , A Review of Material Response and Life...
Abstract
This chapter describes the phenomenological aspects of fatigue and how to assess its effect on the life of components operating in high-temperature environments. It explains how fatigue is measured and expressed and how it is affected by loading conditions (stress cycles, amplitude, and frequency) and factors such as temperature, material defects, component geometry, and processing history. It provides a detailed overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also demonstrates the use of tools and techniques that have been developed to quantify fatigue-related damage and its effect on the remaining life of components.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980417
EISBN: 978-1-62708-342-3
... are: Temperature resistance combined with optimal values for creep and fatigue strength in the operating temperature range Hot toughness Hot wear resistance to abrasion and adhesion Resistance to temperature fluctuations Thermal conductivity Resistance to chemical reaction with the extruded material...
Abstract
This chapter begins with a description of the requirements of tooling and tooling material for hot extrusion. It covers the processes of designing tool and die sets for direct and indirect extrusion. Next, the chapter provides information on extrusion tooling and die sets for direct external and internal shape production and tools for copper alloy extrusion. Further, it addresses design, calculation, and dimensioning of single-piece and two-part containers and describes induction heating for containers. Information on static- and elastic-based analysis and dimensioning of containers loaded in three dimensions is provided. Examples of calculations for different containers, along with their stresses and dimensions, are presented and the manufacture, operation, and maintenance of containers are described. The chapter further discusses the properties and applications of hot working materials for the manufacture of extrusion tooling and of different extruded materials for the manufacture of extrusion tooling for direct and indirect forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170337
EISBN: 978-1-62708-297-6
.... Structural Applications The first successful commercial applications for Ni 3 Al-base alloys were heat treating (carburizing) furnace trays, support posts, and fixtures. Such parts require superior carburization resistance ( Fig. 3 ), high-temperature strength, and thermal fatigue resistance. Other...
Abstract
This article discusses the effect of alloying on the composition, structure, properties, and processing characteristics of ordered intermetallic compounds, including nickel aluminides, iron aluminides, and titanium aluminides. It includes several data tables along with a list of typical applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540121
EISBN: 978-1-62708-309-6
... their use on different metals and alloys. The chapter also discusses design-based approaches for preventing fatigue failures. crack initiation crack propagation fatigue analysis fatigue fracture appearance fatigue life fatigue strength THE DEFINITION OF “FATIGUE” according to ASTM Standard E...
Abstract
This chapter examines the stress-strain characteristics of metals and alloys subjected to cyclic loading and the cumulative effects of fatigue. It begins by explaining how a single load reversal can lower the yield stress of a material and how repeated reversals can cause strain hardening and softening, both of which lead to premature failure. It then discusses the stages of fatigue fracture, using detailed images to show how cracks initiate and grow and how they leave telltale marks on fracture surfaces. It goes on to describe fatigue life assessment methods and demonstrate their use on different metals and alloys. The chapter also discusses design-based approaches for preventing fatigue failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120033
EISBN: 978-1-62708-269-3
... of processing schedules on properties. Table 5.2 summarizes four thermomechanical schedules that produced optimum combinations of properties in test forgings of the alpha-beta alloy, Ti-6Al-4V: excellent tensile strength, good-to-excellent notch fatigue strength, low-cycle fatigue strength, and fracture...
Abstract
This chapter provides practical information on the forming and forging processes used to manufacture titanium parts, including die forging, precision die forging, hot and cold forming, superplastic forming, and deep drawing. It explains how process variables such as temperature, pressure, and strain rate influence microstructure and properties and provides recommended ranges for commonly formed and forged titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870375
EISBN: 978-1-62708-344-7
... Hinges; toys; fibers; pipe; sheet; wire covering Acetal copolymer Highly crystalline; thermally stable; excellent fatigue resistance Speedometer gears; instrument housing; plumbing valves; glands; shower heads Nylon 66 Excellent wear resistance; high strength and good toughness; used...
Abstract
This appendix provides supplemental information on the metallurgical aspects of atomic structure, the use of dislocation theory, heat treatment processes and procedures, important engineering materials and strengthening mechanisms, and the nature of elastic, plastic, and creep strain components. It also provides information on mechanical property and fatigue testing, the use of hysteresis energy to analyze fatigue, a procedure for inverting equations to solve for dependent variables, and a method for dealing with the statistical nature of failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060175
EISBN: 978-1-62708-261-7
... for specific applications include so-called electrical steels (for magnetic properties), spring steels (for high strength and fatigue resistance), and structural steels (for good combinations of both strength and toughness). Steels can be extruded, drawn, stamped, rolled, welded, and forged into many forms...
Abstract
This chapter describes the classification of steels and the various compositional categories of commercial steel products. It explains how different alloying elements affect the properties of carbon and low-alloys steels and discusses strength, toughness, and corrosion resistance and how to improve them.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700095
EISBN: 978-1-62708-279-2
... by thermomechanical treatment ( Ref 5.4 ). Their microstructures were observed and their mechanical properties were evaluated. Results of the investigation showed that both yield and tensile strength increased, whereas uniform elongation and total elongation were slightly reduced by grain refinement. Figure 5.3...
Abstract
Dual-phase (DP) steels have the widest usage in automotive industry because of their excellent combination of strength and ductility. This chapter provides an overview of the composition, microstructure, processing, deformation mechanism, mechanical properties, formability, and special attributes of DP steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310225
EISBN: 978-1-62708-286-0
... component, we discuss them segment by segment through the exhaust system. The exhaust manifold collects the hot, combusted gases from the engine and delivers them to the front pipe. The exhaust manifold must possess good high-temperature strength and resistance to thermal fatigue. It must also be able...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000109
EISBN: 978-1-62708-312-6
..., and heating and cooling profiles, affect strength, ductility, and corrosion resistance. It also provides an extensive amount of property data – including tensile and yield strength, elongation, hardness, and creep and stress rupture measurements as well as fatigue curves – for various grades of powder metal...
Abstract
This chapter discusses the mechanical properties of powder metal stainless steels and the extent to which they can be controlled through appropriate alloying and processing steps. It describes how process-related factors, such as porosity, interstitial content, sintering atmosphere, and heating and cooling profiles, affect strength, ductility, and corrosion resistance. It also provides an extensive amount of property data – including tensile and yield strength, elongation, hardness, and creep and stress rupture measurements as well as fatigue curves – for various grades of powder metal stainless steel.
1