Skip Nav Destination
Close Modal
Search Results for
thermomechanical analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 171 Search Results for
thermomechanical analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2003
Fig. 19 Properties of commercial polymers according to thermomechanical analysis. See “ Abbreviations and Symbols ” in this book for definitions of abbreviations. Source: Ref 84
More
Image
Published: 01 December 2003
Image
Published: 01 December 2003
Fig. 23 Thermomechanical analysis, Vicat softening temperatures, under 10.3 MPa (1.5 ksi). Source: Ref 24
More
Image
Published: 01 December 2003
Fig. 24 Thermomechanical analysis (TMA) heat-deflection temperature under load (DTUL) at 1.82 MPa (0.264 ksi). Source: Ref 24
More
Image
Published: 01 December 2003
Fig. 26 Thermomechanical analysis properties of commercial polymers. PSU, polysulfone; PPO, polyphenylene oxide; PVC, polyvinyl chloride; PTFE, polytetrafluoroethylene. Source: Ref 24
More
Image
in Characterization of Plastics in Failure Analysis[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 40 The thermomechanical analysis results obtained on the failed and reference parts. The results exhibit differences corresponding to a reduction in the glass transition of the failed material.
More
Image
Published: 30 April 2020
Fig. 3.18 Pressure-volume-temperature data taken via thermomechanical analysis. Such data are valuable in developing constitutive equations, as used in computer simulations. These data are fit to polynomial equations to provide density for the solid or liquid versus temperature and pressure
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing...
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780359
EISBN: 978-1-62708-281-5
..., thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses various analytical methods used to characterize the molecular weight distribution of a polymeric material. It provides information on a wide range of mechanical tests that are available to evaluate...
Abstract
This article reviews various analytical techniques most commonly used in plastic component failure analysis. The description of the techniques is intended to make the reader familiar with the general principles and benefits of the methodologies. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aided in the characterization of the failures. The techniques covered include Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses various analytical methods used to characterize the molecular weight distribution of a polymeric material. It provides information on a wide range of mechanical tests that are available to evaluate plastics and polymers, covering the various considerations in the selection and use of test methods.
Image
Published: 01 December 2003
Fig. 17 Heat-deflection temperature per ASTM D 648 at 1.8 MPa (0.264 ksi) of thermoplastics according to thermomechanical analysis; 5 °C/min (9 °F/min) in flexure. PVC, polyvinyl chloride; LDPE, low-density polyethylene; HDPE, high-density polyethylene; PC, polycarbonate
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780343
EISBN: 978-1-62708-281-5
... temperature, T m , because they characterize the useful working temperature range of the material. Either differential scanning calorimetry (DSC) or thermomechanical analysis (TMA) can be used to determine both T g and T m , as well as other thermal events. Repeat analysis can be used on a single...
Abstract
This article introduces procedures an engineer or materials scientist can use to investigate failures. It provides a brief survey of polymer systems and key properties that need to be measured during failure analysis. The article begins with an overview of the problem-solving approach pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal analysis, namely differential thermal analysis, thermogravimetric analysis, thermal-mechanical analysis, and dynamic mechanical analysis. The following sections provide details on X-ray diffraction for analyzing crystalline phases and on a minimal scheme for polymer analysis and characterization to assist the design engineer. The article ends with a discussion on the thermal-analytical scheme for analyzing the milligram quantities of polymer samples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780105
EISBN: 978-1-62708-281-5
... of polymers are then provided. The article concludes with information on three distinctive, but complementary operations of thermoanalytical techniques, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing. differential scanning calorimetry...
Abstract
This article addresses some established protocols in characterizing thermoplastics, whether they are homogeneous resins, alloyed or blended compositions, or highly modified thermoplastic composites. It begins with a description of various approaches used for the determination of molecular weight (MW) by viscosity measurements. This is followed by a discussion of the use of cone and plate and parallel plate geometries in determining the viscoelastic properties of a polymer melt. Details on some of the chromatographic techniques that allow determination of MW and MW distribution of polymers are then provided. The article concludes with information on three distinctive, but complementary operations of thermoanalytical techniques, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.9781627082815
EISBN: 978-1-62708-281-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
... Abstract A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780433
EISBN: 978-1-62708-281-5
... thermomechanical analysis tetramethyl silane time-of- ight secondary ion mass spectrometry poly-(4-methyl-1-pentane) time-temperature-transformation Uniform Building Code ultrahigh-molecular-weight polyethylene Underwriter s Laboratory unsaturated polyester ultraviolet vinyl acetate vinyl chloride vinylidene...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
... model damage mechanics high-temperature creep-fatigue analysis strain-range partitioning thermomechanical fatigue void growth A REVIEW is presented of selected methods now in use, or contemplated for use, for high-temperature creep-fatigue analysis. Among the methods discussed are the 10% rule...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780089
EISBN: 978-1-62708-281-5
... pattern. Other useful tools are infrared spectroscopy for the qualitative and quantitative analysis of raw materials and, in certain cases, extent of cure; thermal analysis techniques, including differential scanning calorimetry and thermogravimetric and thermomechanical analyses for chemical reactivity...
Abstract
This article focuses on characterization techniques used for analyzing the physical behavior and chemical composition of thermoset resins, namely chromatography and infrared spectroscopy. The main purpose is to give sufficient detail to permit the reader understand a particular test technique and its value to the thermoset resin field. Epoxy resins are emphasized in the examples because they dominate the airframe and aerospace industries. The article also provides information on two categories of characterization of the processing behavior of thermoset. The first studies the thermal properties of reactive thermoset systems, while the second utilizes these thermal characteristics as the basis for monitoring and control during processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610415
EISBN: 978-1-62708-303-4
... prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage. constant-load creep curves creep deformation creep-fatigue interaction elevated-temperature fracture high-temperature fatigue stress...
Abstract
This chapter compares and contrasts the high-temperature behaviors of metals and composites. It describes the use of creep curves and stress-rupture testing along with the underlying mechanisms in creep deformation and elevated-temperature fracture. It also discusses creep-life prediction and related design methods and some of the factors involved in high-temperature fatigue, including creep-fatigue interaction and thermomechanical damage.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
... and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040193
EISBN: 978-1-62708-300-3
... a variety of application examples. closed-die forging finite-element analysis impression-die forging microstructure process modeling 16.1 Introduction Development of finite-element (FE) process simulation in forging started in the late 1970s. At that time, automatic remeshing...
Abstract
This chapter discusses the use of finite-element modeling in forging design. It describes key modeling parameters and inputs, mesh generation and computation time, and process modeling outputs such as metal flow, strain rate, loading profiles, and microstructure. It also includes a variety of application examples.
1