1-20 of 532 Search Results for

thermal fatigue cracking

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 September 2005
Fig. 28 Thermal fatigue cracking of a spur gear. (a) Radial cracking due to frictional heat against the thrust face. Original magnification at 0.4×. (b) Progression of thermal fatigue produced by the frictional heat. Original magnification at 1.5× More
Image
Published: 01 March 2002
Fig. 14.13 Thermal fatigue cracking in turbine blade More
Image
Published: 30 November 2013
Fig. 8 Thermal-fatigue crack in the hardfacing alloy on an exhaust valve from a heavy-duty gasoline engine (~2.5×). Advanced burning originated from the large crack. Additional thermal-fatigue cracks are also present on the valve face. Engine efficiency rapidly deteriorates from increasing More
Image
Published: 01 November 2007
Fig. 10.57 Appearance of thermal fatigue cracks occurred on a carbon steel waterwall tube (viewed from 12 o’clock crown position) due to water spraying from waterlances. Source: Ref 40 More
Image
Published: 01 November 2007
Fig. 10.58 Optical micrograph showing circumferential thermal fatigue cracks that developed on a carbon steel waterwall tube (shown in Fig. 10.57 ) due to water spraying from waterlances. Source: Ref 40 More
Image
Published: 01 October 2011
Fig. 16.13 Thermal fatigue crack produced in the hardfacing alloy on an exhaust valve from a heavy-duty gasoline engine More
Image
Published: 01 December 1989
Fig. 9.30. Initiation of thermal-fatigue cracks in the interdiffusional zone (a) and the coating (b) of a Udimet 720 blade coated with aluminide (RT-22) ( Ref 56 ; courtesy of V.P. Swaminathan, South West Research institute, San Antonio, TX). More
Image
Published: 01 March 2002
Fig. 14.18 Thermal-mechanical fatigue cracking on internal surface of a nickel-base superalloy forward liner of a gas turbine combustor. Note: One crack extends from a keyhole slot (right), while another can be seen in the area adjacent to an airhole (left). 1.5× More
Image
Published: 01 March 2002
Fig. 14.19 Low-cycle fatigue cracking induced by thermal strains in the rivet slot of a nickel-base superalloy disk More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080259
EISBN: 978-1-62708-304-1
..., intended to reduce NOx emissions, accelerates tube wall wastage. It also covers circumferential cracking in furnace waterwalls, thermal fatigue cracking induced by waterlances and water cannons, superheater-reheater corrosion, and erosion in fluidized-bed boilers. coal-fired boilers combustion...
Image
Published: 01 September 2008
amount of thermal fatigue cracking is observed. “C” is a region not affected by process heat and used as a reference. (d) Thermal cracks of region “B”, under scanning electron microscopy. Courtesy of Villares Metals More
Image
Published: 01 November 2007
Fig. 10.59 (a) Scanning electron micrograph (backscattered electron image) showing a circumferential thermal fatigue crack (from the sample shown in Fig. 10.57 ) along with (b) an EDX spectrum showing the corrosion product inside the crack to be essentially iron oxides. Source: Ref 40 More
Image
Published: 01 November 2007
Fig. 10.60 Alloy 622 overlay (dye penetrant tested) after 4 years of service involving the use of waterlances for deslagging. The overlay was applied onto the carbon steel waterwall after thermal fatigue cracks caused by waterlances were ground off. The dye penetrant testing showed no cracking More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430325
EISBN: 978-1-62708-253-2
.... Cracking of the tube ends is a characteristic feature of thermal fatigue. Thermal fatigue damage typically exhibits numerous cracks and crazing. Damage due to thermal fatigue can be of the low-cycle or high-cycle type ( Ref 6.1 ). Drastic change in temperature causing thermal shock or a large...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630237
EISBN: 978-1-62708-270-9
... or its absence and the patterns on the fracture surface. Thermal Fatigue Fatigue may be caused either by cyclic mechanical stressing or by cyclic thermal stressing. Thermal-fatigue cracks are the result of repeated heating and cooling cycles, producing alternate expansion and contraction. When...
Image
Published: 01 December 2003
Fig. 3 Thermal fatigue failure and conventional fatigue crack propagation fracture during reversed load cycling of acetal. Source: Ref 10 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060231
EISBN: 978-1-62708-343-0
...-concentration factor for initiating thermal low-cycle fatigue cracks Fig. 10.12 Injector nozzle element in a fuel preburner assembly showing location of the initiation and propagation of high-cycle fatigue cracks at the critical radius (point A ) Fig. 10.13 Near-term fix to prevent...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060385
EISBN: 978-1-62708-261-7
... is the sole source of thermal fatigue. On cooling, residual tensile stresses are produced if the metal is prevented from moving (contracting) freely. Fatigue cracks can initiate and grow as cycling continues. These types of failures can be experienced in electronic solder joints, for example. An example...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490111
EISBN: 978-1-62708-340-9
... overview of the damage mechanisms associated with high-cycle and low-cycle fatigue as well as thermal fatigue, creep-fatigue, and fatigue-crack growth. It also demonstrates the use of tools and techniques that have been developed to quantify fatigue-related damage and its effect on the remaining life...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
... are often performed to predict when the next internal or external inspection should be performed. Typical life-limiting mechanisms include stress-corrosion cracking, fatigue, and thermal fatigue. Welded structures that could initiate a crack are often susceptible to these mechanisms. The leak-before-break...