Skip Nav Destination
Close Modal
Search Results for
thermal evaporation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 210 Search Results for
thermal evaporation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2013
Fig. 9 Schematic of the basic thermal evaporation process with an electron beam heating source. Source: Ref 6
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230361
EISBN: 978-1-62708-298-3
... Abstract This chapter discusses coating technologies that are applicable to beryllium, including physical and chemical vapor deposition, thermal evaporation, electroplating, sputtering, ion plating, and plasma arc spraying. It describes the advantages and disadvantages of each method...
Abstract
This chapter discusses coating technologies that are applicable to beryllium, including physical and chemical vapor deposition, thermal evaporation, electroplating, sputtering, ion plating, and plasma arc spraying. It describes the advantages and disadvantages of each method and the effect of temperature, pressure, and other process variables on the microstructures and properties developed.
Image
Published: 01 July 2009
Fig. 22.1 Schematic illustrations of physical vapor deposition processing methods. (a) Vacuum evaporation. (b) and (c) Sputter deposition in a plasma environment. (d) Sputter deposition in vacuum. (e) Ion plating in a plasma environment with a thermal evaporation source. (f) Ion plating
More
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
..., and magnetron sputtering ( Ref 4 ). Thermal Evaporation Thermal evaporation is another common PVD process, in which the coating material is heated until it evaporates; the resulting vapor condenses on the surface of the substrate and forms the thin film. A variant of this is electron beam evaporation (e...
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
.... These mechanisms and their modifications lead to a multiplicity of PVD processes ( Ref 22.14 , 22.16 , 22.32 ). Evaporation is accomplished by heating source materials in high vacuums (7.5 × 10 −6 torr or better). At sufficiently high temperatures, atoms or molecules are thermally evaporated from the source...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.9781627084406
EISBN: 978-1-62708-440-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
... Abstract This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic...
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... is accomplished by heating source materials in high vacuums (10 –6 kPa, or 7.5 × 10 –6 torr, or better) to cause the thermal evaporation of atoms or molecules that travel through the vacuum and deposit on a substrate surface ( Ref 30 ). Deposition processes based solely on evaporation are being replaced by more...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290139
EISBN: 978-1-62708-319-5
... Migration and Evaporation Steps In thermal burnout, heat is applied to the powder compact to evaporate the binder. A concentration gradient forms from the component surface to the core. In response to that gradient, the rate-controlling transport step depends on molten binder flow in the pores, binder...
Abstract
Binder removal approaches involve various combinations of heat, solvents, vacuum, and pressure. In each variant, the goal is binder removal without component damage. This chapter addresses the factors that control success, showing how process decisions depend on the powder and binder characteristics. The chapter starts with a comparison of binder-, lubricant-, and polymer-removal situations that arise after powder shaping and then describes the general principles of binder removal in powder-binder techniques. The subsequent sections discuss in detail characteristics, operating procedure, equipment setup, advantages, limitations, and applications of first- and second-stage binder removal processes, as well as the factors influencing these processes. Cost issues associated with binder-removal technologies are also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430017
EISBN: 978-1-62708-253-2
... of 47 to 49% (Ref 2.5). Whether a particular plant cycle is subcritical or supercritical depends on the operating pressure in the evaporator part of the boiler. If the operating An Overview of the Functioning of a Thermal Power Plant / 25 pressure is less than about 220 bar (22.1 MPa), the cycle...
Abstract
Coal-based thermal power plants play a major role in the welfare of many nations and the overall global economy. This chapter describes the basic equipment requirements and operating principles of thermal power plants, particularly subcritical, supercritical, and ultra-supercritical types.
Image
Published: 30 April 2020
Fig. 7.13 Trace of dimensional variation during binder burnout captured by using noncontact laser dilatometry. At low temperature, there is swelling followed by shrinkage as the temperature increases. The events include binder thermal expansion, binder melting, molten binder migration
More
Image
Published: 01 November 2007
Fig. 10.92 Spallation of the thermal sprayed coating on the bottom surface of the test tube sample after exposure for 14,021 h as part of the in-bed evaporator tubes in a 130 MW(e) bubbling fluidized-bed boiler. The coating was applied to alloy 625 overlay, which acted as a butter layer
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... overlays, thermal spraying, and various deposition technologies. ceramic coating chemical vapor deposition cladding corrosion resistance electroless plating electroplating hot dip metallic coating physical vapor deposition thermal spraying weld overlays THE SURFACE-ENGINEERING METHODS...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.8 Strength evolution at various temperatures during sintering, showing the in situ strength after 60 min hold. The greatest strength and resistance to distortion is near 1200 °C (2190 °F). Strength loss at higher temperatures is due to thermal softening. Below 600 °C (1110 °F
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290067
EISBN: 978-1-62708-319-5
..., leaving behind a backbone to provide handling strength Evaporation of the backbone phase in a subsequent step using thermal decomposition during heating Sintering of the structure by continued heating to avoid any handling of the binderless structure This progressive removal concept guides...
Abstract
This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts with the requirements of a binder system, the historical progression of binder formulations, and the use of binder alternatives to adapt to specific applications. The importance of binder handling strength to shape preservation is emphasized. The chapter provides information on the binders used for room-temperature shaping, namely slurry and tape casting systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230117
EISBN: 978-1-62708-298-3
... in an organic acid, followed by evaporation to give either a solid or an oily liquid. The oxide carboxylate is extracted with chloroform or petroleum ether and recrystallized from the solvent. These compounds are nonelectrolytes, soluble in organic solvents, insoluble in cold water, possess sharp melting points...
Abstract
This chapter discusses the synthesis of important beryllium compounds, including beryllium borides, beryllium carbide, beryllium carbonates, beryllium carboxylates, beryllium halides, beryllium hydride, beryllium hydroxide, beryllium nitrate, beryllium nitride, beryllium oxalate, beryllium oxide, beryllium oxide carboxylates, beryllium perchlorate, beryllium phosphates, beryllium sulfate, and beryllium sulfide.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240095
EISBN: 978-1-62708-251-8
..., gravity, micro, and inverse. The chapter also provides information on grain refinement and secondary dendrite arm spacing and porosity and shrinkage in castings. It concludes with a brief overview of six of the most important casting processes in industries: sand casting, plaster mold casting, evaporative...
Abstract
Almost all metals and alloys are produced from liquids by solidification. For both castings and wrought products, the solidification process has a major influence on both the microstructure and mechanical properties of the final product. This chapter discusses the three zones that a metal cast into a mold can have: a chill zone, a zone containing columnar grains, and a center-equiaxed grain zone. Since the way in which alloys partition on freezing, it follows that all castings are segregated to different categories. The different types of segregation discussed include normal, gravity, micro, and inverse. The chapter also provides information on grain refinement and secondary dendrite arm spacing and porosity and shrinkage in castings. It concludes with a brief overview of six of the most important casting processes in industries: sand casting, plaster mold casting, evaporative pattern casting, investment casting, permanent mold casting, and die casting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
... root of sum of CTE coefficient of thermal expansion da/dt crack growth rate (time derivative of crack length) squares of individual measurements divided by the total number DC die casting of measurements E modulus of elasticity SC sand casting EPC evaporative pattern casting (lost foam) SCC stress...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290035
EISBN: 978-1-62708-319-5
... jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting...
Abstract
Generally, binders consist of at least three ingredients: a backbone to provide strength (compounds such as polyethylene, polypropylene, ethylene vinyl acetate, and polystyrene); a filler, such as polyacetal and paraffin wax, to occupy space between particles; and additives, such as stearates, stearic acid, or magnesium stearate, as well as phosphates and sulfonates, to adjust viscosity, lubricate tooling, disperse particles, or induce binder wetting of the powder. In the case of binders deposited via ink jet printing, the binder contains solvents to lower the viscosity for easier jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting, are covered. The chapter ends with information on the specification of polymers used in binders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310057
EISBN: 978-1-62708-286-0
..., and that they have a thermal expansion coefficient that is closer to that of the oxide than do austenitic alloys (such as 302B, 309, and 310). This gives them an advantage in cyclic oxidation applications even though their strength at high temperatures does not rival that of austenitic alloys. The ferritic stainless...
Abstract
Stainless steel retains strength and has excellent oxidation resistance from room temperature to nearly 1000 deg C relative to competitive materials. This chapter focuses on the high-temperature oxidation of stainless steel by oxygen or water vapor. It begins by discussing the thermodynamic conditions and electrochemical nature of oxidation and providing information on transient oxidation. This is followed by a description of Wagner's theory for metal oxidation. The volatile nature of Cr 2 O 3 is then reviewed. The chapter further discusses the causes and preventive measures of spalling and cracking of oxide scale. It ends with a section providing information on oxidation behaviors under less-oxidizing atmospheres.
1