Skip Nav Destination
Close Modal
Search Results for
thermal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1411 Search Results for
thermal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... Abstract This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric...
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860133
EISBN: 978-1-62708-348-5
...Variation of thermal resistance to electronic and phonon components of conduction. Table 4.1 Variation of thermal resistance to electronic and phonon components of conduction. Scattering Mechanism Temperature Dependence Low Temperatures Phonon– crystal boundary T −3...
Abstract
This chapter presents basic principles and the theoretical results of heat transport in solids. Thermal conductivity and thermal diffusivity are the principal properties discussed. Discussions are also included on the effects of temperature, magnetic field, and metallurgical variations caused by composition, processing, and heat-treatment differences. Numerous graphs illustrate the qualitative and quantitative effects of these variables. Measurement methods and associated accuracies and pertinent empirical correlations are presented.
Image
in Cold Spray Coating Applications in Protection and Manufacturing
> High Pressure Cold Spray: Principles and Applications
Published: 01 June 2016
Fig. 7.5 Thermal cyclic life of thermal barrier coatings (TBCs) with the bond coats deposited by cold spraying (CS-TBC) and low-pressure plasma spray (LPPS-TBC). Source: Ref 7.17
More
Image
Published: 01 December 2003
Image
Published: 01 November 2019
Image
Published: 01 November 2019
Figure 34 Thermal infrared detected hot spot on a silicon IC, overlayed on a thermal infrared reference image. Normally the hot spot is displayed in false color to contrast vigorously with the black and white reference image. Courtesey of Quantum Focus Instruments Corporation.
More
Image
Published: 01 July 2009
Fig. 4.19 Linear thermal properties. (a) Recommended thermal linear expansion curves for beryllium based on a large number (38) of investigations. The vertical axes from left to right are for polycrystalline material and for single crystals parallel to the a-axis and c-axis, respectively
More
Image
Published: 01 November 2013
Fig. 14 Thermal cracks in a cemented carbide insert. The thermal cracks are perpendicular to the cutting edge, and the mechanical cracks are parallel to the cutting edge. Original magnification: 15×. Source: Ref 7
More
Image
in Modeling and Use of Correlations in Heat Treatment
> Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels
Published: 01 December 1996
Fig. 9-2 (a) The thermal conductivity and (b) thermal diffusivity of steels as a function of temperature. (From J.B. Austin, Flow of Heat in Metals , American Society for Metals, Metals Park, Ohio (1942), Ref 1 )
More
Image
in Aerospace Applications—Example Fatigue Problems
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 10.5 Half-cycles of thermal strain-induced hysteresis. (a) Thermal down-shock followed by equilibrium temperatures. (b) Thermal up-shock following Space Shuttle Main Engine firing
More
Image
Published: 01 December 2008
Fig. 2.18 The thermal analysis curve (a) and the thermal expansion curve (b) for pure iron A 3 transformation (circled) is an abnormal one progressing in the opposite direction (from “coarse” to “dense”).
More
Image
Published: 01 January 1998
Fig. 13-26 Surface area of thermal cracking as a function of thermal cycles for H13 steel austenitized and heat treated to various levels of hardness. Source Ref 19 , as reproduced in Ref 6
More
Image
Published: 01 June 1983
Figure 3.4 Typical curves of thermal expansion, L ( T ), and thermal expansion coefficient, α , as a function of temperature.
More
Image
Published: 01 June 1983
Figure 3.24 Ratio of the thermal expansion to the thermal expansion coefficient as a function of temperature for copper and aluminum.
More
Image
Published: 01 June 1983
Figure 3.25 Deviation of the ratio of thermal expansion to thermal expansion coefficient for various metals and alloys from that of copper as a function of temperature.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110209
EISBN: 978-1-62708-247-1
... Abstract Many defects generate excessive heat during operation; this is due to the power dissipation associated with the excess current flow at the defect site. There are several thermal detection techniques for failure analysis and this article focuses on infrared thermography with lock...
Abstract
Many defects generate excessive heat during operation; this is due to the power dissipation associated with the excess current flow at the defect site. There are several thermal detection techniques for failure analysis and this article focuses on infrared thermography with lock-in detection, which detects an object's temperature from its infrared emission based on blackbody radiation physics. The basic principles and the interpretation of the results are reviewed. Some typical results and a series of examples illustrating the application of this technique are also shown. Brief sections are devoted to the discussion on liquid-crystal imaging and fluorescent microthermal imaging technique for thermal detection.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780089
EISBN: 978-1-62708-281-5
... technique and its value to the thermoset resin field. Epoxy resins are emphasized in the examples because they dominate the airframe and aerospace industries. The article also provides information on two categories of characterization of the processing behavior of thermoset. The first studies the thermal...
Abstract
This article focuses on characterization techniques used for analyzing the physical behavior and chemical composition of thermoset resins, namely chromatography and infrared spectroscopy. The main purpose is to give sufficient detail to permit the reader understand a particular test technique and its value to the thermoset resin field. Epoxy resins are emphasized in the examples because they dominate the airframe and aerospace industries. The article also provides information on two categories of characterization of the processing behavior of thermoset. The first studies the thermal properties of reactive thermoset systems, while the second utilizes these thermal characteristics as the basis for monitoring and control during processing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780105
EISBN: 978-1-62708-281-5
... of a solution or melt include: fast test capability for thermally sensitive materials, ease of sample preparation and subsequent cleanup, and the ability to use different test geometries to maximize the output signal and thereby realize the maximum sensitivity of the instrument. For example, conventional melt...
Abstract
This article addresses some established protocols in characterizing thermoplastics, whether they are homogeneous resins, alloyed or blended compositions, or highly modified thermoplastic composites. It begins with a description of various approaches used for the determination of molecular weight (MW) by viscosity measurements. This is followed by a discussion of the use of cone and plate and parallel plate geometries in determining the viscoelastic properties of a polymer melt. Details on some of the chromatographic techniques that allow determination of MW and MW distribution of polymers are then provided. The article concludes with information on three distinctive, but complementary operations of thermoanalytical techniques, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780295
EISBN: 978-1-62708-281-5
... Abstract In an attempt to explain the stresses encountered in the plastics industry, this article first defines the different types of internal stresses in amorphous polymers. Each type of thermal stress is then discussed in detail, with reference to the mechanism of generation and the effect...
Abstract
In an attempt to explain the stresses encountered in the plastics industry, this article first defines the different types of internal stresses in amorphous polymers. Each type of thermal stress is then discussed in detail, with reference to the mechanism of generation and the effect on engineering properties. Methods of detecting and measuring internal stresses are also presented. The article then describes the combined effects of thermal stresses and orientation that result from processing conditions. Finally, it discusses numerous aspects of physical aging and the use of high-modulus graphite fibers in amorphous polymers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310161
EISBN: 978-1-62708-286-0
... Abstract This chapter discusses different thermal processes applicable to the various alloy groups of stainless steels, namely austenitic, ferritic, martensitic, precipitation hardening, and duplex stainless steels. The processes discussed include soaking, annealing, stress relieving...
Abstract
This chapter discusses different thermal processes applicable to the various alloy groups of stainless steels, namely austenitic, ferritic, martensitic, precipitation hardening, and duplex stainless steels. The processes discussed include soaking, annealing, stress relieving, austenitizing, tempering, aging, and conditioning.
1