Skip Nav Destination
Close Modal
By
Vladimir Dmitrovic, Rama I. Hegde, Andrew J. Mawer, Rik J. Otte, D. Martin Knotter ...
Search Results for
test quantification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 41 Search Results for
test quantification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780057
EISBN: 978-1-62708-268-6
... mean times between failure probability test quantification FAULT-TREE ANALYSIS event probabilities and ranking of failure causes based on these probabilities is addressed in this chapter. Failure rates, failure-rate sources, probability determinations, mean times between failure, and related...
Abstract
Quantifying a fault-tree analysis is a useful tool for assessing the most likely causes of a system failure. This chapter addresses fault-tree analysis event probabilities and ranking of failure causes based on these probabilities. Failure rates, failure-rate sources, probability determinations, mean times between failure, and related topics are also discussed. The discussion covers the practices observed in fault-tree analysis quantification and processes involved in calculating the probability of the top undesired event.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110447
EISBN: 978-1-62708-247-1
... Spectroscopy Oxide Thickness Measurement on BGA and QFP for Solderability Assessment Introduction This chapter is an application of Auger Electron Spectroscopy (AES) where the oxide thickness is measured and related to solderability testing for evaluation of ball grid array (BGA) and quad flat...
Abstract
There are several analytical methods available that can be used in-line on whole wafers as well as off-line on de-processed products that are returned from the field. These techniques are surface analytical techniques that can be used to characterize the bulk of the material. The main six methods used in semiconductor industry are: Auger spectroscopy, dynamic secondary ion mass spectroscopy, time of flight static secondary ion mass spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscope-EDX. This review specifically addresses ToF-SIMS and describes some typical examples of the application of Auger and SEM-EDX.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090109
EISBN: 978-1-62708-462-8
...-Isolation Die-Level Failure Analysis Die-level failure analysis typically consists of two sequential steps. The first step is fault isolation, which uses software diagnostics, automated test equipment (ATE) testers, and a variety of optical-based fault isolation techniques to narrow down the faulty...
Abstract
The first step in die-level failure analysis is to narrow the search to a specific circuit or transistor group. Then begins the post-isolation process which entails further localizing the defect, determining its electrical, physical, and chemical properties, and examining its microstructure in order to identify the root cause of failure. This chapter assesses the tools and techniques used for those purposes and the challenges brought on by continued transistor scaling, advanced 3D packages, and new IC architectures. The areas covered include sample preparation, nanoprobing, microscopy, FIB circuit edit, and scanning probe microscopy.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... resolution 10 nm 5–10 μm 150 nm Information Mostly elemental, SEM photos Elemental, chemical Elemental, molecular Strengths Ultimate small area analysis, imaging Ease of use, quantification Chemical and molecular analysis, imaging Limitations Semiconductive Very few Quantification...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930023
EISBN: 978-1-62708-359-1
... Abstract This article describes the weldability tests that are used to evaluate the effects of welding on such properties and characteristics as base-metal and weld-metal cracking; base-metal and weld-metal ductility; weld penetration; and weld pool shape and fluid flow. It also describes...
Abstract
This article describes the weldability tests that are used to evaluate the effects of welding on such properties and characteristics as base-metal and weld-metal cracking; base-metal and weld-metal ductility; weld penetration; and weld pool shape and fluid flow. It also describes several weldability tests for evaluating cracking susceptibility, classified as self-restraint or externally loaded tests. The article discusses the processes, advantages, and disadvantages of the weld pool shape tests, the weld penetration tests, and the Gleeble test.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400089
EISBN: 978-1-62708-316-4
... they are applied and removed and how their pressure and temperature ranges can be extended by performance enhancing additives. The chapter also explains how sheet metal forming lubricants are evaluated in the laboratory as well as on the production floor and how tribological tests are conducted to simulate...
Abstract
This chapter discusses the factors that must be considered when selecting a lubricant for sheet metal forming operations. It begins with a review of lubrication regimes and friction models. It then describes the selection and use of sheet metal forming lubricants, explaining how they are applied and removed and how their pressure and temperature ranges can be extended by performance enhancing additives. The chapter also explains how sheet metal forming lubricants are evaluated in the laboratory as well as on the production floor and how tribological tests are conducted to simulate stamping, deep drawing, ironing, and blanking operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060251
EISBN: 978-1-62708-355-3
... Abstract High strain rate tensile testing is used to understand the response of materials to dynamic loading. The behavior of materials under high strain rate tensile loads may differ considerably from that observed in conventional tensile tests. This chapter discusses the processes involved...
Abstract
High strain rate tensile testing is used to understand the response of materials to dynamic loading. The behavior of materials under high strain rate tensile loads may differ considerably from that observed in conventional tensile tests. This chapter discusses the processes involved in determining strain rate effects in tension by conventional tensile tests and covers expanding ring tests, flat plate impact tests, split-Hopkinson pressure bar tests, and rotating wheel tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220353
EISBN: 978-1-62708-259-4
... fractions that can influence steel properties: Properties associated to the ductile fracture process Ductility Elongation and reduction of area (in tensile test) Toughness in the region of ductile fracture and ductile to brittle transition temperature Fatigue resistance Ability...
Abstract
This chapter discusses the effects of hot working on the structure and properties of steel. It explains how working steels at high temperatures promotes diffusion, which helps close cavities and pores, and how it changes the shape and distribution of segregates, offsetting their effect. It describes the effect of hot working on nonmetallic inclusions and the many properties influenced by them. It discusses the recrystallization mechanism by which hot working produces microstructural changes and explains how to control it by adjusting temperature, degree of reduction, and cooling rates. It describes special cases of segregation, including banding and why it occurs, and the application of closed die forging. The chapter also presents several examples of hot working defects, including forging laps, cracks, and overheated or burned steel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
... quantification of different microstructural features. Quantitative image analysis is a fast, reliable, reproducible, and versatile approach for quantification, analysis, and documentation of the micro-structure of the material. Commercially developed image analyzers make use of the latest developments...
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390145
EISBN: 978-1-62708-459-8
... Abstract This chapter provides a practical overview of the tools and techniques used to assess the tribological aspects of metal forming processes. It describes test methods that have been developed to evaluate bulk deformation and sheet metal forming processes along with lubricant rheology...
Abstract
This chapter provides a practical overview of the tools and techniques used to assess the tribological aspects of metal forming processes. It describes test methods that have been developed to evaluate bulk deformation and sheet metal forming processes along with lubricant rheology, friction forces, and stress and strain distributions. It explains how to measure temperature between tooling and workpiece surfaces as well as surface topography and composition, film thickness, and wear. It also discusses the benefits of reduced-scale and simulation testing and the transfer of results from one process to another.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310067
EISBN: 978-1-62708-346-1
... Abstract In dynamic hardness tests, the test force is applied to the defined indenter in an accelerated way (with a high application rate). Dynamic test methods relate hardness to the elastic response of a material, whereas the classical static indentation tests determine hardness in terms...
Abstract
In dynamic hardness tests, the test force is applied to the defined indenter in an accelerated way (with a high application rate). Dynamic test methods relate hardness to the elastic response of a material, whereas the classical static indentation tests determine hardness in terms of plastic behavior. This chapter describes the most important and widespread dynamic hardness testing methods. These tests fall into two categories: methods in which the deformation is measured and methods in which the energy is measured. Methods that measure deformation include the Poldi hammer method, the shearing force method, the Baumann hammer method, and the Dynatest method. Methods that measure energy include the Shore method, the Leeb method, and the Nitronic method. The chapter concludes with a discussion of applications of dynamic hardness testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320049
EISBN: 978-1-62708-332-4
... is to be expected, but the number of samples tested will allow quantification of the factor of safety. A few pieces are test run to failure in order to validate that the location of the failure is identical to the one with the highest stress location, as seen in the FEA. If there is a mismatch, the team reviews...
Abstract
This chapter provides an overview of how the disciplines of design, material, and manufacturing contribute to engineering for functional performance. It describes the interaction of product designers and casting engineers in product development. It discusses the consequences of component failure, uncertainty in data and assumptions, and selection of the factor of safety. The chapter also presents an overview of the functional requirements for product performance and provides an overview of product design development. It also presents a partial list of the different tests that are performed on prototypes and examples of product testing. The chapter describes the requirements of a traceability system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780359
EISBN: 978-1-62708-281-5
..., thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses various analytical methods used to characterize the molecular weight distribution of a polymeric material. It provides information on a wide range of mechanical tests that are available to evaluate...
Abstract
This article reviews various analytical techniques most commonly used in plastic component failure analysis. The description of the techniques is intended to make the reader familiar with the general principles and benefits of the methodologies. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aided in the characterization of the failures. The techniques covered include Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses various analytical methods used to characterize the molecular weight distribution of a polymeric material. It provides information on a wide range of mechanical tests that are available to evaluate plastics and polymers, covering the various considerations in the selection and use of test methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500179
EISBN: 978-1-62708-317-1
... the hoop test gives a good indication of formability, the test setup can be used only for a specific tube size. The quantification of tube formability using the hydraulic bulge test ( Fig. 9.6 ) is based on the maximum bulge height the tube can attain at a specific hydraulic pressure. The burst pressure...
Abstract
Tube hydroforming is a material-forming process that uses pressurized fluid to plastically deform tubular materials into desired shapes. It is widely used in the automotive industry for making exhaust manifolds, catalytic converters, shock absorber housings, and other parts. This chapter discusses the basic methods of tube hydroforming and the underlying process mechanics. It explains how to determine if a material is a viable candidate and whether it can withstand preforming or bending operations. It describes critical process parameters, such as interface pressure, surface expansion and contraction, and sliding velocity, and how they influence friction, lubrication, and wear. The chapter also provides information on forming presses and tooling, tube hydropiercing, and the use of finite elements to determine optimal processing conditions and loading paths.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060149
EISBN: 978-1-62708-261-7
... Abstract This chapter explains how metallography and hardness testing are used to evaluate the quality and condition of metal products. It also discusses the use of tensile testing, fracture toughness and impact testing, fatigue testing, and nondestructive test methods including ultrasonic, x...
Abstract
This chapter explains how metallography and hardness testing are used to evaluate the quality and condition of metal products. It also discusses the use of tensile testing, fracture toughness and impact testing, fatigue testing, and nondestructive test methods including ultrasonic, x-ray, and eddy current testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500317
EISBN: 978-1-62708-317-1
... hardening, case (surface) hardening, and nitriding as well as hard chrome plating, vapor deposition, and thermal diffusion coating. It explains how to measure wear resistance using various tests and provides guidelines for selecting tool materials, treatments, and coatings. chemical vapor deposition...
Abstract
This chapter discusses the types of failures that can occur in sheet metal forming tools and explains how to mitigate their effects. It describes the factors that influence galling and wear and the benefits of special treatments and coatings. It provides information on through hardening, case (surface) hardening, and nitriding as well as hard chrome plating, vapor deposition, and thermal diffusion coating. It explains how to measure wear resistance using various tests and provides guidelines for selecting tool materials, treatments, and coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220025
EISBN: 978-1-62708-259-4
... of G . Evidently, the repeatability and reproducibility of the methods are not the same, and the ASTM standard establishes that in case of dispute, the planimetric procedure should be used. The standard makes it clear that the test method deals with the determination of “planar grain size...
Abstract
This chapter discusses the context in which metallography is used and some of the challenges of analyzing three-dimensional structures from a two-dimensional perspective. It describes the hierarchical nature of metals, the formation of grain boundaries, and the notable characteristics of microstructure. It explains how microstructure can be represented qualitatively by points, lines, surfaces, and volumes associated to a large extent with grain contact, and how qualitative features (including grains) can be quantified based on cross-sectional area, volume fraction, density, distribution, and other such metrics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290001
EISBN: 978-1-62708-319-5
... is required to sinter bond and sinter densify the particles ( Chapter 8 ). After proper sintering, the material exhibits handbook properties (often established by industry standardization bodies such as the American Society for Testing and Materials [ASTM International], Metal Powder Industries Federation...
Abstract
This chapter provides an introduction to powder processing of binders and polymers. It sets the context for the remainder of the book by providing an overview of the topics discussed in the subsequent chapters and by providing introduction to powder-binder fabrication and customization of feedstock and describing the challenges in component production. The chapter also summarizes alphabetically a few key concepts in powder-binder processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850410
EISBN: 978-1-62708-260-0
.... It provides examples showing how the various features appear, how they are measured, and how the resulting data are converted into usable form. The chapter also discusses the quantification of fracture morphology and its correlation with material properties and behaviors. grain morphology grain...
Abstract
This chapter covers the emerging practice of quantitative microscopy and its application in the study of the microstructure of metals. It describes the methods used to quantify structural gradients, volume fraction, grain size and distribution, and other features of interest. It provides examples showing how the various features appear, how they are measured, and how the resulting data are converted into usable form. The chapter also discusses the quantification of fracture morphology and its correlation with material properties and behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060049
EISBN: 978-1-62708-261-7
... is affected by material characteristics and the loading conditions. There are many variables that affect the ECT, and quantification of an actual temperature is possible for only a specific set of conditions. The usefulness of the ECT in practical terms is limited. Most creep testing is done under tension...
Abstract
This chapter introduces the concepts of mechanical properties and the various underlying metallurgical mechanisms that can be used to alter the strength of materials. The mechanical properties discussed include elasticity, plasticity, creep deformation, fatigue, toughness, and hardness. The strengthening mechanisms covered are solid-solution strengthening, cold working, and dispersion strengthening. The effect of grain size on the yield strength of a material is also discussed.
1