Skip Nav Destination
Close Modal
Search Results for
surface degradation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 445 Search Results for
surface degradation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030237
EISBN: 978-1-62708-349-2
... of surface oxidation after exposure to a range of light wavelengths. 2× magnification photograph of a 10.2 × 15.2 cm (4 × 6 in.) panel Fig. 14.5 Degradation of a composite surface after exposure to atomic oxygen. (a) Bright-field illumination, 25× objective. (b) Transmitted light, differential...
Abstract
Polymer composite materials are subject to degradation if not appropriately protected from the environment. Composite materials having polymeric matrices are susceptible to degradation from heat, sunlight, ozone, atomic oxygen (in space), moisture, solvents (chemicals), fatigue, excessive loading, and combinations of these environmental conditions. This chapter discusses the effects of heat, ultraviolet-light, and atomic oxygen on composite materials.
Image
Published: 01 November 2010
Fig. 14.5 Degradation of a composite surface after exposure to atomic oxygen. (a) Bright-field illumination, 25× objective. (b) Transmitted light, differential interference contrast, 20× objective
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780146
EISBN: 978-1-62708-281-5
..., namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects. chemical susceptibility thermal oxidative degradation photo-oxidative degradation environmental corrosion chemical corrosion plasticization solvation...
Abstract
This article discusses the chemical susceptibility of a polymeric material. The discussion covers significant absorption and transportation of an environmental reagent by the polymer; the chemical susceptibility of additives; and thermal degradation, thermal oxidative degradation, photo-oxidative degradation, environmental corrosion, and chemical corrosion of polymers. It also includes some of the techniques used to detect changes in structure during polymer exposure to hostile environments. In addition, the article describes the effects of environment on polymer performance, namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
..., it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780336
EISBN: 978-1-62708-281-5
... (for example, fungal growth on surface) or if the mass balance of starting material and products was not established. On the other hand, it is highly likely that materials that have been interpreted as being nondegradable by ASTM methods are indeed nondegradable, unless their degradation is catalyzed...
Abstract
This article provides a review of the biodegradation mechanisms of plastics, presents the definitions, and describes the means of measurement of biodegradation and biodeterioration. Various experimental examples of microbial degradation, namely fungal attack in cellophane and amylose films, starch-based polyethylene films, films with modified starch additives, poly(3-hydroxybutyrate-valerate)-biodegradable plastic, and biodisintegration and biodegradation studies of plastic-starch blends, are also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780359
EISBN: 978-1-62708-281-5
..., creep rupture, environmental stress cracking, molecular degradation, and fatigue. In the case of failure involving fracture, the determination of the failure mode involves identifying how the crack initiated and how it subsequently extended. This is usually ascertained using a number of visual-based...
Abstract
This article reviews various analytical techniques most commonly used in plastic component failure analysis. The description of the techniques is intended to make the reader familiar with the general principles and benefits of the methodologies. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aided in the characterization of the failures. The techniques covered include Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses various analytical methods used to characterize the molecular weight distribution of a polymeric material. It provides information on a wide range of mechanical tests that are available to evaluate plastics and polymers, covering the various considerations in the selection and use of test methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870401
EISBN: 978-1-62708-314-0
... had the highest moisture content, as they were not subject to direct sunlight, which dries out the composite. Also, note that decreases in weight occurred due to loss of epoxy material from the exposed surface layer caused by ultraviolet degradation. Thus, even though carbon/epoxy can absorb upward...
Abstract
This chapter describes the conditions under which environmental degradation is likely to occur in polymer matrix composites and the potential damage it can cause. It discusses the problems associated with moisture absorption and exposure to solvents, fuels, ultraviolet radiation, lightning strikes, thermal oxidation, and extreme temperatures. It also discusses the factors that influence flammability.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270158
EISBN: 978-1-62708-301-0
... on or near the fracture surfaces of the laments or at any other location on the surface of the wire Visual Examination of General Physical Features rope. General degradation of the strands was observed. These in- clude corrosion and pitting, small nicks, and rubbing of the wires All seven strands were found...
Abstract
This chapter discusses the failure of a control cable on an aircraft and the findings of an investigation that followed. The cable was made of stranded steel wire that was visibly worn. All seven strands had snapped and bore evidence of corrosion, pitting, nicks, and rubbing. Based on their observations and the results of SEM fractography, investigators concluded that tensile overload was the predominate cause of failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030245
EISBN: 978-1-62708-349-2
.... In composites that have been struck by lightning, with or without surface protection, there are usually areas that have heat damage. This damage is commonly found near the surface but can extend throughout the composite, depending on the constituents. As discussed previously, heat can degrade and vaporize both...
Abstract
Lightning damage in polymer composites, as in metal structures, is manifested by damage at both the macroscopic or visual level and within the material microstructure. In addition to visual damage assessment, non-destructive inspection techniques are employed to detect damage within the composite part. This chapter describes the macroeffects of a lightning strike on composites and discusses the methods involved in the assessment of microstructural damage in composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280323
EISBN: 978-1-62708-267-9
... or fracture. If a coating is degraded, a component may be susceptible to surface attack and failure has occurred. Similarly, if a part creeps during operation so that the part begins to impinge on another part, failure has occurred. In the general sense, elevated-temperature failure modes may...
Abstract
This chapter discusses the failure of superalloy components in high-temperature applications where they are subject to the effects of microstructural changes, melting, and corrosion. It explains how overheating can deplete alloying elements and alter the composition and distribution of phases, and how these processes contribute to microstructural changes as a function of time, temperature, and applied stress. It also describes several failure examples and discusses related issues, including damage recovery, refurbishment, and repair.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900071
EISBN: 978-1-62708-350-8
... in the degradation of surface finish and control of the compound zone formation. Gases primarily used for ion nitriding and the control parameters used in ion nitriding are also covered. The chapter also presents the philosophies and advantages of the plasma generation technique for nitriding. It concludes...
Abstract
This chapter begins with an overview of the history of ion nitriding. This is followed by sections that describe how the ion nitriding process works, glow discharge characteristics, process parameters requiring good control, and the applications of plasma processing. The chapter explores what happens in the ion nitriding process and provides information on its gas ratios. It describes the reactions that occur at the surface of the material being treated during iron nitriding and defines corner effect and nitride networking. Further, the chapter provides information on the stability of surface layers and processes involved in the degradation of surface finish and control of the compound zone formation. Gases primarily used for ion nitriding and the control parameters used in ion nitriding are also covered. The chapter also presents the philosophies and advantages of the plasma generation technique for nitriding. It concludes with processes involved in oxynitriding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780153
EISBN: 978-1-62708-281-5
... wavelengths tend to penetrate more deeply into a plastic material but have a moderate degradative effect because they are not easily absorbed. Shorter wavelengths tend to have a greater effect on the surface of the material because their total energy can be absorbed within a few micrometers of the surface...
Abstract
This article presents a general overview of outdoor weather aging factors, their effects on plastic materials, and the accelerated test methods that can be used to estimate the reaction of a plastic component during actual use. Weather and radiation factors that contribute to degradation in plastics include temperature variations, moisture, sunlight, oxidation, microbiologic attack, and other environmental elements. The article also describes the tests used to predict the behavior of a plastic material to outdoor exposure, discussing the use of xenon arc lamp for the weatherometer and fadeometer and the use of fluorescent sunlamp in test devices.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430149
EISBN: 978-1-62708-253-2
... grains ( Fig. 6.6b ). Scaling was found on both the outer and inner surfaces of the tube. Fig. 6.6 OD microstructures at (a) far-side location of banded ferrite and pearlite, 200×; and (b) near-side failure location of ferrite grains and degraded pearlite in the form of spheroidization...
Abstract
Boiler tubes operating at high temperatures under significant pressure are vulnerable to stress rupture failures. This chapter examines the cause, effect, and appearance of such failures. It discusses the conditions and mechanisms that either lead to or are associated with stress rupture, including overheating, high-temperature creep, graphitization, and dissimilar metal welds. It explains how to determine which mechanisms are in play by interpreting fracture patterns and microstructural details. It also describes the investigation of several carbon and low-alloy steel tubes that failed due to stress rupture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030148
EISBN: 978-1-62708-282-2
... damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum, copper, titanium, zirconium, vanadium, niobium, and tantalum alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780329
EISBN: 978-1-62708-281-5
... by placing it in a location known to have a harsh environment, such as Florida, and waiting for physical failure to occur ( Ref 3 ). Typical types of failure include yellowing, chalking, surface embrittlement, loss of tensile or impact strength, and cracking. Chemical degradation usually proceeds from...
Abstract
This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light wavelengths responsible for polymer photochemistry, problems with artificial light sources, general photooxidation and specific photochemical reactions important in plastics, and the factors influencing the rate of degradation. The approaches used to stabilize plastics against photochemical damage, including ultraviolet light absorbers, oxidation inhibitors, and the use of protective coatings, are also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310213
EISBN: 978-1-62708-286-0
.... Mill finishes such as 2B and 2D are inconsistent because they are annealed and pickled to remove oxides. These unattractive surfaces, however, have correct corrosion resistance for their alloy content. Welding or abrading the surface degrades the corrosion resistance by a significant amount. An un-heat...
Abstract
This chapter deals with the technology of stainless steel as it pertains to its proper use in architecture, art, and construction. It begins with an overview of the corrosion resistance of stainless steel, providing guidelines for balancing corrosion resistance, processing characteristics, and economy. This is followed by sections describing the influence of surface finish on corrosion resistance of stainless steel and reviewing some of the factors pertinent to balancing service environment, design requirements, and maintenance considerations. The chapter then discusses the various factors pertinent to important considerations in buildings, namely surface finish aesthetics, flatness, maintenance, repair, fabrication, and service considerations. It ends with a section providing information on concrete reinforcing bar.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110524
EISBN: 978-1-62708-247-1
... densities of 10MW/cm 2 are not uncommon. Note that these densities are greater than the optical density at the surface of the sun). Even if COMD can be avoided, we can observe high degradation near the facet region. It is one cause of normal wearout failure on edge-emitting lasers [14] . Finally...
Abstract
Optoelectronic components can be readily classified as active light-emitting components (such as semiconductor lasers and light emitting diodes), electrically active but non-emitting components, and inactive components. This chapter focuses on the first category, and particularly on semiconductor lasers. The discussion begins with the basics of semiconductor lasers and the material science behind some causes of device failure. It then covers some of the common failure mechanisms, highlighting the need to identify failures as wearout or maverick failures. The chapter also covers the capabilities of many key optoelectronic failure analysis tools. The final section describes the common steps that should be followed so as to assure product reliability of optoelectronic components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280287
EISBN: 978-1-62708-267-9
.... Deposit-modified high-temperature corrosion is usually called hot corrosion. It is an important means of superalloy degradation and, as noted later, may have names attached to specific forms of the deposit-modified corrosive attack. Elevated-temperature oxidation is not the only surface degradation...
Abstract
Superalloys tend to operate in environments where they are subjected to high-temperature corrosion, oxidation, and the erosive effects of hot gases. This chapter discusses the nature of these attacks and the effectiveness of various protection methods. It describes the primary forms of oxidation, the development of protective oxides, and the conditions associated with mixed gas corrosion and hot corrosion attack. It discusses oxidation and corrosion testing, the equipment used, and various ways to present the associated data. It describes the effect of gaseous oxidation on different alloys, discusses the formation of oxide scale in the presence of mixed gases, and explains how alloy composition contributes to oxide growth. The chapter discusses the underlying chemistry of hot corrosion, how to identify its effects, and how it progresses under various conditions. It also discusses protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain.
Image
Published: 01 October 2012
(constant stress-rate loading) data. Strength degradation in water is predicted for a dynamic load of 1 MPa/s. A mixed-mode fracture criterion was chosen to account for the change in surface flaw reliability for multiaxial stress states. Source: Ref 10.10
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280203
EISBN: 978-1-62708-267-9
... also are used for removing tarnish. The applicability of these methods is determined by the configuration of the parts, the surface finish required, and the allowable loss of gage or dimension. However, abrasive cleaning can remove some metal and degrade surface finishes. Therefore, chemical means...
Abstract
Superalloys are susceptible to damage from a variety of surface contaminants. They may also require special surface finishes for subsequent processing steps such as coating applications. This chapter describes some of the cleaning and finishing procedures that have been developed for superalloys and how they work. It discusses the effect of metallic contaminants, tarnish, oxide, and scale and how they can be detected and removed. It also discusses chemical and mechanical surface finishing techniques and where they are used, and presents several application examples.
1