Skip Nav Destination
Close Modal
Search Results for
superplastic flow
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 64 Search Results for
superplastic flow
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060209
EISBN: 978-1-62708-355-3
... on the High-Temperature Flow Behavior of an Orthorhombic Titanium Aluminide Alloy , Metall. Mater. Trans. A. , Vol 28 A (No. 3A ), March 1997 , p 885 – 893 10.1007/s11661-997-0076-8 16. Pilling J. and Ridley N. , Superplasticity in Crystalline Solids , The Institute of Metals...
Abstract
This chapter focuses on short-term tensile testing at high temperatures. It emphasizes one of the most important reasons for conducting hot tensile tests: the determination of the hot working characteristics of metallic materials. Two types of hot tensile tests are discussed in this chapter, namely, the Gleeble test and the conventional isothermal hot-tensile test. The discussion covers equipment used and testing procedures for the Gleeble test along with information on hot ductility and strength data from this test. The chapter describes the stress-strain curves, material coefficients, and flow behavior determined in the isothermal hot tensile test. It also describes three often-overlapping stages of cavitation during tensile deformation, namely, cavity nucleation, growth of individual cavities, and cavity coalescence.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280091
EISBN: 978-1-62708-267-9
..., the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also...
Abstract
This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping, the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also discusses the forgeability of alloys, addresses problems and practical issues, and describes the forging of gas turbine disks. On the topic of forming, the chapter discusses the processes involved, the role of alloying elements, and the effect of alloy condition on formability. It addresses practical concerns such as forming speed, rolling direction, rerolling, and heat treating precipitation-hardened alloys. It presents several application examples involving carbide-hardened cobalt-base and other superalloys, and it concludes with a discussion on superplasticity and its adaptation to commercial forging and forming operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming. hot working cold working bulk deformation rolling forging extrusion sheet metal forming blanking piercing bending stretch forming drawing rubber pad forming...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480095
EISBN: 978-1-62708-318-8
..., and grain size are the major factors that influence the superplasticity of titanium alloys. Strain-rate sensitivity, m , is defined as: m = Δ ( log σ ) Δ ( log ε ′ ) where σ is flow stress, and ε′ is strain rate. The Δ signifies a change, and m is thus...
Abstract
Titanium, like other metals, can be shaped, formed, and strengthened through deformation processes. This chapter describes the structural changes that occur in titanium during deformation and how they can be controlled. It discusses the role of slip, dislocations, and twinning, the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120033
EISBN: 978-1-62708-269-3
... Abstract This chapter provides practical information on the forming and forging processes used to manufacture titanium parts, including die forging, precision die forging, hot and cold forming, superplastic forming, and deep drawing. It explains how process variables such as temperature...
Abstract
This chapter provides practical information on the forming and forging processes used to manufacture titanium parts, including die forging, precision die forging, hot and cold forming, superplastic forming, and deep drawing. It explains how process variables such as temperature, pressure, and strain rate influence microstructure and properties and provides recommended ranges for commonly formed and forged titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480243
EISBN: 978-1-62708-318-8
... were investigated to fabricate TiAl alloy products using a combination process of SPF with diffusion bonding. Superplastic tensile tests were carried out at temperatures ranging from 1000 to 1100 °C (1830 to 2010 °F) and at strain rates ranging from 10 –5 to 10 –3 s –1 . A low superplastic flow...
Abstract
This chapter describes the equipment and processes used to form titanium alloy parts. It discusses the advantages and disadvantages of hot and cold forming, the factors that influence formability, and the effect of forming temperature and lubricants. It describes common processes, including brake forming, stretch forming, deep drawing, and spin forming as well as roll forming, drop-hammer forming, tube bulging and bending, and superplastic forming. It also discusses dimpling and joggling and the use of hot sizing to correct springback.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740163
EISBN: 978-1-62708-308-9
... materials and lubricants along with superplastic forming techniques. cutting lubricants sheet metal forming SHEET METAL forming processes usually employ hot or cold rolled sheet or strip material that is normally cold formed into the desired shape. Deformation is primarily by tension...
Abstract
This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die materials and lubricants along with superplastic forming techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
...-strain curve, also known as the flow curve, should be used. The true stress-strain curve is based on the actual dimensions of the test specimen as it undergoes plastic deformation and has the shape shown in Fig. 12.11 . The true stress, σ, is defined as: (Eq 12.10) σ = P...
Abstract
The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear. Important tensile properties that can be determined by the tensile test include yield strength, ultimate tensile strength, ductility, resilience, and toughness. The chapter describes the effects of stress concentrations on ductile metals under cyclic loads. Other topics covered include combined stresses, yield criteria, and residual stresses of metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... distortion. Brazing at the aging temperature is impractical because few filler metals melt and flow at these temperatures. Selection of filler metal for brazing titanium alloys is critical because titanium alloys react with many of the constituents of brazing filler metals to form undesirable...
Abstract
This chapter covers the welding characteristics of titanium along with the factors that determine which welding method is most appropriate for a given application. It discusses the joinability of titanium alloys, the effect of heat on microstructure, the cause of various defects, and the need for contaminant-free surfaces and atmospheres. It describes common forms of fusion, arc, and solid-state welding along with the use of filler metals, shielding gases, and stress-relief treatments. It also discusses the practice of titanium brazing and the role of filler metals.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040257
EISBN: 978-1-62708-300-3
... that superplastic behavior is predominant ( Fig. 20.4 ). The high strain-rate sensitivity of superplastic materials promotes die filling and resists localized plastic deformation, making these materials extremely suitable for isothermal and hot-die forging. Also, the reduction of flow stress with decreasing strain...
Abstract
This chapter discusses the processes of isothermal and hot-die forging and their use in producing aerospace components. It explains how isothermal forging was developed to provide a near-net shape component geometry and well-controlled microstructures and properties with accurate control of the working temperature and strain rate. It describes the materials typically used as well as equipment and tooling, die heating procedures, part separation techniques, and postforging heat treatment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060101
EISBN: 978-1-62708-355-3
... 28. Rai G. and Grant N.J. , On the Measurements of Superplasticity in an Al-Cu Alloy, Met. Trans A. , Vol 6A , 1975 , p 385 – 390 10.1007/BF02667294 29. McGregor Tegart W.J. in Elements of Mechanical Metallurgy , Macmillan , 1966 , p 29 – 38 30...
Abstract
Sheet metal forming operations consist of a large family of processes, ranging from simple bending to stamping and deep drawing of complex shapes. Because sheet forming operations are so diverse in type, extent, and rate, no single test provides an accurate indication of the formability of a material in all situations. However, as discussed in this chapter, the uniaxial tensile test is one of the most widely used tests for determining sheet metal formability. This chapter describes the effect of material properties and temperature on sheet metal formability. Information on the types of formability tests is also provided. The chapter discusses the processes involved in uniaxial and plane-strain tensile testing. Examples include the uniaxial tensile test and the plane-strain tensile test which are subsequently described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550033
EISBN: 978-1-62708-307-2
...-Silicon Alloys (4<italic>xxx</italic>) The major characteristics of the 4 xxx series are: Heat treatable Good flow characteristics and medium strength Typical ultimate tensile strength range of 175 to 380 MPa (25 to 55 ksi) Easily joined, especially by brazing and soldering...
Abstract
This chapter provides basic engineering information on aluminum alloys with an emphasis on their use in applications where weight is a significant design factor. It discusses the advantages and limitations of various types of aluminum along with their compositions, designations, and achievable strengths. It explains how some alloys are hardened through solution strengthening and cold working, while others are strengthened by precipitation hardening. It also describes production and fabrication processes such as melting, casting, rolling, forging, forming, extruding, heat treating, and joining, and includes a section on the causes and effects of corrosion and how they are typically controlled.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610025
EISBN: 978-1-62708-303-4
... to 0.8, where a value of 1.0 would indicate a perfectly superplastic material. The presence of a neck in a material undergoing a tensile strain results in a locally high strain rate and, for a high value of m , to a sharp increase in the flow stress within the necked region; that is, the neck undergoes...
Abstract
This chapter discusses the stress-strain response of materials, how it is measured, and how it used to set performance expectations. It begins by describing the common tensile test and how it sheds light on the elastic design of structures as well as plasticity and fracture behaviors. It explains how engineering and true stress-strain curves differ, how one is used for design and the other for analyzing metal forming operations. It discusses the effect of holes, fillets, and radii on the distribution of stresses and the use of notch tensile testing to detect metallurgical embrittlement. The chapter also covers compression, shear, and torsion testing, the prediction of yielding, residual stress, and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
...) deposition, and (4) collector manipulation. Induction heating is used to produce the melt that flows into a gas atomizer. Melting and dispensing is carried out in a vacuum chamber. The atomized stream of metal is collected on a substrate placed in the line of flight. Overspray is separated by a cyclone...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550223
EISBN: 978-1-62708-307-2
...-temperature aging treatment. This alloy also exhibits excellent superplastic forming characteristics; it can be formed at temperatures lower than that for Ti-6Al-4V and yet have higher strengths. SP-700 (Ti-4.5Al-3V-2Mo-2Fe) was developed as a lower-temperature superplastic forming alloy that can...
Abstract
Titanium is a lightweight metal used in a growing number of applications for its strength, toughness, stiffness, corrosion resistance, biocompatibility, and high-temperature operating characteristics. This chapter discusses the applications, metallurgy, properties, compositions, and grades of commercially pure titanium and alpha and near-alpha, alpha-beta, and beta titanium alloys. It describes primary and secondary fabrication processes, including melting, forging, forming, heat treating, casting, machining, and joining as well as powder metallurgy and direct metal deposition. It also compares and contrasts the properties of wrought, cast, and powder metal titanium products and discusses corrosion behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870183
EISBN: 978-1-62708-314-0
... of the product form used. For example, well-consolidated hot melt–impregnated tape can be successfully consolidated in very short times (minutes if not seconds), while woven powder coated or comingled prepregs require longer times for the resin to flow and impregnate the fibers. Occasionally, a process called...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290137
EISBN: 978-1-62708-306-5
...-pressure diffusion bonding. Fig. 6.1 Sequence of metallurgical stages in the diffusion bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion...
Abstract
Solid-state welding processes are those that produce coalescence of the faying surfaces at temperatures below the melting point of the base metals being joined without the addition of brazing or solder filler metal. This chapter discusses solid-state welding processes such as diffusion welding, forge welding, roll welding, coextrusion welding, cold welding, friction welding, friction stir welding, explosion welding, and ultrasonic welding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500083
EISBN: 978-1-62708-317-1
... and cause an unbalanced metal flow, which may lead to premature fracture. The uniaxial tensile test ( Fig. 5.3 ) is probably the most commonly used sheet metal formability test. The specimen is locked at each end and stretched until it fractures. The elevated-temperature tensile testing procedure...
Abstract
This chapter describes the effect of temperature and strain rate on the mechanical properties and forming characteristics of aluminum and magnesium sheet materials. It discusses the key differences between isothermal and nonisothermal warm forming processes, the factors that affect heat transfer, die heating techniques, and press systems. It also discusses the effect of forming temperature, punch velocity, blank size, and other parameters on deep drawing processes, making use of both experimental and simulated data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
.... The important properties for conductor cores are specific strength, electrical conductivity, CTE, high-temperature capabilities, and cost. Increased demand for electricity and the effect of deregulation requires utility companies to consider means for increasing the ampacity (i.e., the maximum current flow...
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060013
EISBN: 978-1-62708-355-3
.... This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. The chapter reviews the effect of strain rate and temperature on the stress-strain curve and describes the instability in tensile...
Abstract
This chapter focuses on mechanical behavior under conditions of uniaxial tension during tensile testing. It begins with a discussion of properties determined from the stress-strain curve of a metal, namely, tensile strength, yield strength, measures of ductility, modulus of elasticity, and resilience. This is followed by a section describing the parameters determined from the true stress-true strain curve. The chapter then presents the mathematical expressions for the flow curve. The chapter reviews the effect of strain rate and temperature on the stress-strain curve and describes the instability in tensile deformation and stress distribution at the neck in the tensile specimen. It discusses the processes involved in ductility measurement and notch tensile test in tensile specimens. The parameter that is commonly used to characterize the anisotropy of sheet metal is covered. Finally, the chapter covers the characterization of fractures in tensile test specimens.
1