Skip Nav Destination
Close Modal
Search Results for
superplastic deformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 71 Search Results for
superplastic deformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 February 2005
Image
in Forming of Titanium Plate, Sheet, Strip, and Tubing[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 11.8 Superplastic forming is strongly dependent on grain size. Effect of grain size on (a) strain rate of superplastic deformation for Ti-6Al-4V and Ti-5Al-2.5Sn alloys and (b) superplastic deformation temperature for Ti-6.5Al-3.3Mo-1.8Zr-0.26Si alloy
More
Image
Published: 01 December 2004
Fig. 28 Variation of the cavity-growth rate for different mechanisms. r c , critical cavity radius; r osp , cavity radius for onset of superplastic deformation; r csp , critical cavity radius for superplastic deformation. Source: Ref 44
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060209
EISBN: 978-1-62708-355-3
... radius for onset of superplastic deformation; r csp , critical cavity radius for superplastic deformation. Source: Ref 44 Fig. 29 Comparison of measurements and predictions of the evolution of average cavity radius with strain for an Al-7475 alloy assuming continuous nucleation ( Eq 25...
Abstract
This chapter focuses on short-term tensile testing at high temperatures. It emphasizes one of the most important reasons for conducting hot tensile tests: the determination of the hot working characteristics of metallic materials. Two types of hot tensile tests are discussed in this chapter, namely, the Gleeble test and the conventional isothermal hot-tensile test. The discussion covers equipment used and testing procedures for the Gleeble test along with information on hot ductility and strength data from this test. The chapter describes the stress-strain curves, material coefficients, and flow behavior determined in the isothermal hot tensile test. It also describes three often-overlapping stages of cavitation during tensile deformation, namely, cavity nucleation, growth of individual cavities, and cavity coalescence.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming. hot working cold working bulk deformation rolling forging extrusion sheet metal forming blanking piercing bending stretch forming drawing rubber pad forming...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480243
EISBN: 978-1-62708-318-8
... fabrication and is an effective means of both weight and cost savings ( Ref 11.18 ). Superplastic forming is extensively discussed in Chapter 5, “Deformation and Recrystallization of Titanium and Its Alloys,” in this book. Superplasticity is a condition in which a solid crystalline material is deformed...
Abstract
This chapter describes the equipment and processes used to form titanium alloy parts. It discusses the advantages and disadvantages of hot and cold forming, the factors that influence formability, and the effect of forming temperature and lubricants. It describes common processes, including brake forming, stretch forming, deep drawing, and spin forming as well as roll forming, drop-hammer forming, tube bulging and bending, and superplastic forming. It also discusses dimpling and joggling and the use of hot sizing to correct springback.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280091
EISBN: 978-1-62708-267-9
..., the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also...
Abstract
This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping, the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also discusses the forgeability of alloys, addresses problems and practical issues, and describes the forging of gas turbine disks. On the topic of forming, the chapter discusses the processes involved, the role of alloying elements, and the effect of alloy condition on formability. It addresses practical concerns such as forming speed, rolling direction, rerolling, and heat treating precipitation-hardened alloys. It presents several application examples involving carbide-hardened cobalt-base and other superalloys, and it concludes with a discussion on superplasticity and its adaptation to commercial forging and forming operations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480095
EISBN: 978-1-62708-318-8
..., the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes. annealing deformation...
Abstract
Titanium, like other metals, can be shaped, formed, and strengthened through deformation processes. This chapter describes the structural changes that occur in titanium during deformation and how they can be controlled. It discusses the role of slip, dislocations, and twinning, the effect of grain size and crystal orientation, the concept of texture strengthening, and the principles of strain hardening and superplasticity. It also discusses the effect of annealing and the difference between recrystallization and neocrystallization processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120033
EISBN: 978-1-62708-269-3
... should not be formed above the beta transus temperature. Because of aging, scaling, and embrittlement, as well as the greater cost of forming at high temperatures, hot forming normally is done at the lowest possible temperature that will permit the desired deformation. Superplastic Forming...
Abstract
This chapter provides practical information on the forming and forging processes used to manufacture titanium parts, including die forging, precision die forging, hot and cold forming, superplastic forming, and deep drawing. It explains how process variables such as temperature, pressure, and strain rate influence microstructure and properties and provides recommended ranges for commonly formed and forged titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
... to resist plastic instability or necking. Superplasticity is the ability of certain polycrystalline metallic materials to extend plastically to large strains when deformed in tension. For superplasticity, m is usually greater than 0.5, with the majority of superplastic materials having an m value...
Abstract
The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear. Important tensile properties that can be determined by the tensile test include yield strength, ultimate tensile strength, ductility, resilience, and toughness. The chapter describes the effects of stress concentrations on ductile metals under cyclic loads. Other topics covered include combined stresses, yield criteria, and residual stresses of metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740163
EISBN: 978-1-62708-308-9
... materials and lubricants along with superplastic forming techniques. cutting lubricants sheet metal forming SHEET METAL forming processes usually employ hot or cold rolled sheet or strip material that is normally cold formed into the desired shape. Deformation is primarily by tension...
Abstract
This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die materials and lubricants along with superplastic forming techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060101
EISBN: 978-1-62708-355-3
... provided. The chapter discusses the processes involved in uniaxial and plane-strain tensile testing. Examples include the uniaxial tensile test and the plane-strain tensile test which are subsequently described. References References 1. Holloman J.H. , Tensile Deformation, Trans. AIME...
Abstract
Sheet metal forming operations consist of a large family of processes, ranging from simple bending to stamping and deep drawing of complex shapes. Because sheet forming operations are so diverse in type, extent, and rate, no single test provides an accurate indication of the formability of a material in all situations. However, as discussed in this chapter, the uniaxial tensile test is one of the most widely used tests for determining sheet metal formability. This chapter describes the effect of material properties and temperature on sheet metal formability. Information on the types of formability tests is also provided. The chapter discusses the processes involved in uniaxial and plane-strain tensile testing. Examples include the uniaxial tensile test and the plane-strain tensile test which are subsequently described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610025
EISBN: 978-1-62708-303-4
..., are subjected to forces or loads. In order that excessive deformation or failure does not occur, it is important to know what effects these loads have on the part. The mechanical behavior of a material reflects the relationship between its response or deformation to an applied load or force. Important...
Abstract
This chapter discusses the stress-strain response of materials, how it is measured, and how it used to set performance expectations. It begins by describing the common tensile test and how it sheds light on the elastic design of structures as well as plasticity and fracture behaviors. It explains how engineering and true stress-strain curves differ, how one is used for design and the other for analyzing metal forming operations. It discusses the effect of holes, fillets, and radii on the distribution of stresses and the use of notch tensile testing to detect metallurgical embrittlement. The chapter also covers compression, shear, and torsion testing, the prediction of yielding, residual stress, and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550223
EISBN: 978-1-62708-307-2
... (approximately 60% of the density of iron) that can be highly strengthened by alloying and deformation processing. Titanium is nonmagnetic and has good heat-transfer properties. Its coefficient of thermal expansion is somewhat lower than that of steels and less than half that of aluminum. Titanium and its alloys...
Abstract
Titanium is a lightweight metal used in a growing number of applications for its strength, toughness, stiffness, corrosion resistance, biocompatibility, and high-temperature operating characteristics. This chapter discusses the applications, metallurgy, properties, compositions, and grades of commercially pure titanium and alpha and near-alpha, alpha-beta, and beta titanium alloys. It describes primary and secondary fabrication processes, including melting, forging, forming, heat treating, casting, machining, and joining as well as powder metallurgy and direct metal deposition. It also compares and contrasts the properties of wrought, cast, and powder metal titanium products and discusses corrosion behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
... Component production by isothermal or superplastic forging to shape/dimensions The first aircraft gas turbine to employ widespread use of a P/M extruded and isothermally forged nickel-base superalloy turbine was the Pratt & Whitney F100. It began operational service on the F-15 Eagle fighter...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040257
EISBN: 978-1-62708-300-3
... that superplastic behavior is predominant ( Fig. 20.4 ). The high strain-rate sensitivity of superplastic materials promotes die filling and resists localized plastic deformation, making these materials extremely suitable for isothermal and hot-die forging. Also, the reduction of flow stress with decreasing strain...
Abstract
This chapter discusses the processes of isothermal and hot-die forging and their use in producing aerospace components. It explains how isothermal forging was developed to provide a near-net shape component geometry and well-controlled microstructures and properties with accurate control of the working temperature and strain rate. It describes the materials typically used as well as equipment and tooling, die heating procedures, part separation techniques, and postforging heat treatment.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500083
EISBN: 978-1-62708-317-1
... Wu X. , Liu Y. , and Wang S. , Superplastic Deformation and Forming of Commercial Magnesium and Aluminum Alloys with Initial Coarse Grains , Proceedings of the 2002 NSF Design, Service and Manufacturing Grantees and Research Conference , p 2072 – 2080 5.27 Naka T...
Abstract
This chapter describes the effect of temperature and strain rate on the mechanical properties and forming characteristics of aluminum and magnesium sheet materials. It discusses the key differences between isothermal and nonisothermal warm forming processes, the factors that affect heat transfer, die heating techniques, and press systems. It also discusses the effect of forming temperature, punch velocity, blank size, and other parameters on deep drawing processes, making use of both experimental and simulated data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550033
EISBN: 978-1-62708-307-2
... only 2 = Cold worked and partially annealed 3 = Cold worked and stabilized 2 = ¼ hard 4 = ½ hard 6 = ¾ hard 8 = hard 9 = Extra hard Source: Ref 2.3 To redistribute residual stresses after quenching, stress relieving by deformation is often applied to high...
Abstract
This chapter provides basic engineering information on aluminum alloys with an emphasis on their use in applications where weight is a significant design factor. It discusses the advantages and limitations of various types of aluminum along with their compositions, designations, and achievable strengths. It explains how some alloys are hardened through solution strengthening and cold working, while others are strengthened by precipitation hardening. It also describes production and fabrication processes such as melting, casting, rolling, forging, forming, extruding, heat treating, and joining, and includes a section on the causes and effects of corrosion and how they are typically controlled.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290137
EISBN: 978-1-62708-306-5
... associated with diffusion bonding and welding processes. These processes use either deformation or diffusion and limited deformation to produce high-quality joints between both similar and/or dissimilar materials. Specific solid-state welding processes include: Diffusion welding, also commonly referred...
Abstract
Solid-state welding processes are those that produce coalescence of the faying surfaces at temperatures below the melting point of the base metals being joined without the addition of brazing or solder filler metal. This chapter discusses solid-state welding processes such as diffusion welding, forge welding, roll welding, coextrusion welding, cold welding, friction welding, friction stir welding, explosion welding, and ultrasonic welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... during solidification. Preheating the reinforcement before mixing can help remove moisture and trapped air between the particles. During casting, porosity can be reduced by (1) casting in a vacuum, (2) bubbling inert gas through the melt, (3) casting under pressure, and (4) deformation processing after...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
1