Skip Nav Destination
Close Modal
Search Results for
superalloy scrap
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 56 Search Results for
superalloy scrap
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280041
EISBN: 978-1-62708-267-9
... in the process. It is a particular advantage of the EAF/AOD process that the raw material that may be used in the process is the least costly of that used in any superalloy melting process. Scrap may be used without requiring premelt preparation. To a limited degree, oxides of expensive raw materials...
Abstract
This chapter discusses the melting and conversion of superalloys and the solidification challenges they present. Superalloys have high solute content which can lead to untreatable defects if they solidify too slowly. These defects, called freckles, are highly detrimental to fatigue life. The chapter explains how and why freckles form as well as how they can be prevented. It describes the criteria for selecting the proper melting method for specific alloys based on melt segregation and chemistry requirements. It compares standard processes, including electric arc furnace/argon oxygen decarburization melting, vacuum induction melting, vacuum arc remelting, and electroslag remelting. It also addresses related issues such as consumable remelt quality, control anomalies, melt pool characteristics, and melt-related defects, and includes a section that discusses the processes involved in converting cast ingots into mill products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280339
EISBN: 978-1-62708-267-9
... Abstract This chapter discusses the progress that has been made in the development of superalloy operating temperatures, properties, and performance. It also provides forward-looking projections based on advances in process modeling, alloying, and production techniques. superalloys...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... the scrap during the manufacture of superalloy components are reduced during the melting process. Therefore, compared to EAF/AOD-melted alloys, VIM-melted superalloys have improved fatigue and stress-rupture properties. Control of alloying elements with VIM can also achieve much tighter levels than...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170290
EISBN: 978-1-62708-297-6
..., prone to excessive microporosity, which leads to reduced ductility and rupture life. This problem is most frequently associated with revert alloys, that is, alloys made from superalloy scrap. A study of MAR-M002 doped with 24 and 50 ppm of nitrogen showed the increased porosity and a change...
Abstract
This article discusses the composition, structure, and properties of iron-nickel-, nickel-, and cobalt-base superalloys and the effect of major alloying and trace elements. It describes the primary and secondary roles of each alloying element, the amounts typically used, and the corresponding effect on properties and microstructure. It also covers mechanical alloying and weldability and includes nominal composition data on many wrought and cast superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280203
EISBN: 978-1-62708-267-9
... severe surface attack and reduce a component to scrap. Surface nishing may be necessary to improve component performance; however, many nishing operations commonly used for steel and other metals are not required for superalloys. This is due to: The inherent corrosion resistance of superalloys...
Abstract
Superalloys are susceptible to damage from a variety of surface contaminants. They may also require special surface finishes for subsequent processing steps such as coating applications. This chapter describes some of the cleaning and finishing procedures that have been developed for superalloys and how they work. It discusses the effect of metallic contaminants, tarnish, oxide, and scale and how they can be detected and removed. It also discusses chemical and mechanical surface finishing techniques and where they are used, and presents several application examples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280091
EISBN: 978-1-62708-267-9
... Abstract This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping...
Abstract
This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping, the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also discusses the forgeability of alloys, addresses problems and practical issues, and describes the forging of gas turbine disks. On the topic of forming, the chapter discusses the processes involved, the role of alloying elements, and the effect of alloy condition on formability. It addresses practical concerns such as forming speed, rolling direction, rerolling, and heat treating precipitation-hardened alloys. It presents several application examples involving carbide-hardened cobalt-base and other superalloys, and it concludes with a discussion on superplasticity and its adaptation to commercial forging and forming operations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120131
EISBN: 978-1-62708-269-3
... alloys, superalloys are required in the higher-temperature regions of gas turbines and other aerospace structures. Replacement of the superalloys in later stages of gas turbine hot sections, for example, could lead to significant weight reductions. In the low-pressure turbine (LPT), as engine thrust...
Abstract
This chapter discusses some of the promising developments in the use of titanium, including titanium aluminides, titanium matrix composites, superplastic forming, spray forming, nanotechnology, and rapid solidification rate processing. It also reports on efforts to increase the operating temperature range of conventional titanium alloys and reduce costs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180127
EISBN: 978-1-62708-256-3
... lead, and are designed to meter propellant flow by moving back and forth into a hole through which the propellant flows. They are made from A286, a heat-resistant iron-base superalloy, and are heat treated to 1100 MPa (160 ksi). A pin had failed, causing the propellant flow to become uncontrolled...
Abstract
This chapter describes some common pitfalls encountered in failure investigations and provides guidance to help engineers recognize processes and “quick fixes” that companies often try to substitute for failure analysis. It discusses three important skills and characteristics that a professional engineer must improve to conduct an effective and successful failure investigation, namely technical skills, communication skills, and technical integrity. The chapter also provides information on the additional basic tools available for failure investigation and root cause determination: the Kepner-Tregoe structured problem-solving method, PROACT software for root cause analysis developed by the Reliability Center, Inc., and other processes and methods developed by the Failsafe Network, Inc., and Shainin LLC.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... lead and bismuth) that may enter the scrap circuit during the manufacture of superalloy components are reduced during the melting process. Accordingly, the vacuum-melted superalloys (compared to EAF/AOD-melted alloys) exhibit improved fatigue and stress-rupture properties. Control of alloying...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280211
EISBN: 978-1-62708-267-9
... Abstract This chapter examines the effect of heat treating and other processes on the microstructure-property relationships that occur in superalloys. It discusses precipitation and grain-boundary hardening and how they influence the phases, structures, and properties of various alloys...
Abstract
This chapter examines the effect of heat treating and other processes on the microstructure-property relationships that occur in superalloys. It discusses precipitation and grain-boundary hardening and how they influence the phases, structures, and properties of various alloys. It explains how the delta phase, which is used to control grain size in IN-718, improves strength and prevents stress-rupture embrittlement. It describes heat treatments for different product forms, discusses the effect of tramp elements on grain-boundary ductility, and explains how section size and test location influence measured properties. It also provides information and data on the physical and mechanical properties of superalloys, particularly tensile strength, creep-rupture, fatigue, and fracture, and discusses related factors such as directionality, porosity, orientation, elongation, and the effect of coating and welding processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730051
EISBN: 978-1-62708-283-9
... and hard are historic. The best permanent magnets in the 1910s were made of martensitic steel, which is very hard, and the best soft magnets were made from pure annealed iron. The differences of the B-H curves are shown in Fig. 5.8 . The values of H c range from 0.002 oersteds for a superalloy...
Abstract
This chapter is a review of magnetic materials and how they behave. It begins by discussing the significance of ferromagnetism and comparing the Curie temperature of several ferromagnetic elements. It then discusses the concept of magnetic domains and illustrates how flux paths, and magnetostatic energy, vary based on the size of the domain. It also discusses the process of magnetization and compares and contrasts hard and soft magnetic materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
... superalloys, and a few steels. Conventional Vacuum Arc Remelting Furnace Designs The vacuum system used in the early furnace was essential to avoid air contamination. It also had another benefit by removing troublesome hydrogen and chloride salts. Water-cooled copper hearths and crucibles provided...
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.9781627082839
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
... evidence that the heat treatment was performed adequately. To reduce costs, some companies drop the requirement for the tensile test and only require the hardness test. I once reviewed the heat treatment specification for a company that regularly heat treated Inconel 718, a nickel-base superalloy...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120047
EISBN: 978-1-62708-269-3
.... This is due to a lack of texture and segregation and to the fine, uniform grain structure inherent in titanium P/M products. Equivalent strength levels to wrought products, along with substantially reduced machining and scrap, combine to make P/M titanium products attractive alternatives to conventional ingot...
Abstract
This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several consolidation and shaping processes along with associated property data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220253
EISBN: 978-1-62708-341-6
... it is “walked” through the line by a series of lifting, horizontal transfer, and lowering motions into consecutive vees in the guidance system. Each motion is actuated through a dependable mechanical-linkage system. The last billet comes through by itself, eliminating shutdown scrap. Walking-beam feeds...
Abstract
Because of its speed and ease of control, induction heating can be readily automated and integrated with other processing steps such as forming, quenching, and joining. Completely automated heating/handling/control systems have been developed and are offered by induction equipment manufacturers. This chapter deals with materials handling and automation. First, it summarizes basic considerations such as generic system designs, fixture materials, and special electrical problems to be avoided. Next, it describes and provides examples of materials-handling systems in induction billet heating, bar heating, heat treatment, soldering, brazing, and other induction-based processes. The final section discusses the use of robots for parts handling in induction heating systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.9781627082976
EISBN: 978-1-62708-297-6
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... or no scrap and generate the final part geometry in a very short time, usually in one or a few strokes of a press or hammer. As a result, forging offers potential savings in energy and material, especially in medium and large production quantities, where tool costs can be easily amortized. In addition...
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900029
EISBN: 978-1-62708-358-4
... the lowest-cost materials consistent with obtaining the desired chemistry. Tool steel scrap makes up a large percentage of each charge, typically 75%. This can be internal mill scrap (commonly referred to as revert) consisting of end crops, bar and billet macroslices, and turnings, as well as purchased...
Abstract
This chapter describes some of the more typical manufacturing practices, along with their benefits and limitations. The manufacturing practices covered include primary melting, electroslag remelting, rolling, hot and cold drawing, and continuous casting. The chapter discusses the advance and application of powder metallurgy. A few of the more recently introduced processes that hold considerable promise for producing tool steels or finished tools at a lower cost or with improved quality also are reviewed.
1