Skip Nav Destination
Close Modal
Search Results for
sulfide stress cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 272 Search Results for
sulfide stress cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 2006
Fig. 2 Sulfide stress cracking of a hard weld of a carbon steel vessel in sour water service. BHN, Brinell hardness. 40×
More
Image
Published: 01 December 2006
Fig. 3 Sulfide stress cracking of hard HAZ next to weld in A516-70 pressure vessel steel after exposure to sour water. 35×
More
Image
in Corrosion in Petroleum Refining and Petrochemical Operations[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 36 Sulfide stress cracking of a hard weld of a carbon steel vessel in sour water service. BHN, Brinell hardness. 40×
More
Image
in Corrosion in Petroleum Refining and Petrochemical Operations[1]
> Corrosion in the Petrochemical Industry
Published: 01 December 2015
Fig. 37 Sulfide stress cracking of hard heat-affected zone next to weld in A516-70 pressure vessel steel after exposure to sour water. 35×
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030292
EISBN: 978-1-62708-282-2
... mechanical properties corrosion sulfide stress cracking hydrogen-induced cracking stress-oriented hydrogen-induced cracking hydrogen embrittlement cracking stress-corrosion cracking velocity-accelerated corrosion erosion-corrosion corrosion control CORROSION has often been considered...
Abstract
This chapter presents the primary considerations and mechanisms for corrosion and how they are involved in the selection of materials for process equipment in petroleum refineries and petrochemical plants. In addition, specific information on mechanical properties, corrosion, sulfide stress cracking, hydrogen-induced cracking, stress-oriented hydrogen-induced cracking, hydrogen embrittlement cracking, stress-corrosion cracking, velocity-accelerated corrosion, erosion-corrosion, and corrosion control is provided.
Image
Published: 01 December 2015
Fig. 1 Different forms of corrosion and deterioration. SCC, stress-corrosion cracking. SSC, sulfide stress cracking. HIC, hydrogen-induced cracking. Source: Ref 16
More
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820001
EISBN: 978-1-62708-339-3
... exhibit delayed failure in environments containing hydrogen sulfide. This type of failure is referred to as sulfide stress cracking. The basic cause of sulfide stress cracking is embrittlement resulting from hydrogen absorbed into steel during corrosion in sour environments. The presence of hydrogen...
Abstract
Corrosion failures of welds can occur even when the proper base metal and filler metal have been selected, industry codes and standards have been followed, and welds have been deposited that possess full weld penetration and have proper shape and contour. This chapter describes some of the general characteristics associated with the corrosion of weldments. The role of macro- and microcompositional variations, a feature common to weldments, is emphasized in this chapter to bring out differences that need to be realized in comparing the corrosion of weldments to that of wrought materials. The discussion covers the factors influencing corrosion of weldments, microstructural features of weld microstructures, various forms of weld corrosion, and welding practice to minimize corrosion.
Image
Published: 01 December 2015
Fig. 8 Hierarchical decision tree for use in developing software tool for materials selection of oil and gas service applications. CRA, corrosion-resistant alloy; Env, environment; SCC, stress-corrosion cracking; SSC, sulfide stress cracking. Source: Ref 41
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090443
EISBN: 978-1-62708-266-2
... for exposure of metals and alloys by alternate immersion in neutral 3.5% sodium chloride solution. NACE Standard Test TM-01-77-86: Testing materials for resistance to sulfide stress cracking at ambient temperatures. ANSI/NACE MR0175/ISO 15156: Sulfide stress-corrosion cracking resistant metallic...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090043
EISBN: 978-1-62708-266-2
... Abstract This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas...
Abstract
This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas environments. It explains how composition and microstructure influence SCC, as do mechanical properties such as strength and fracture toughness and processes such as welding and cold work. It also discusses the role of materials selection and best practices for welding.
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820177
EISBN: 978-1-62708-339-3
... (hydrogen embrittlement cracking, also known more familiarly as sulfide stress cracking, or SSC, when involving environments that include exposure to H 2 S). A monograph of classic papers published on cracking of steels in petroleum upstream and downstream wet H 2 S environments was published by NACE...
Abstract
This chapter reviews weld corrosion in three key application areas: petroleum refining and petrochemical operations, boiling water reactor piping systems, and components used in pulp and paper plants. The discussion of each area addresses general design and service characteristics, types of weld corrosion issues, and prevention or mitigation strategies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030247
EISBN: 978-1-62708-282-2
... to –50 °C (–40 to –60 °F). Convenient access to the most important literature on H 2 S corrosion (particularly with regard to sulfide stress cracking, SSC; hydrogen induced cracking, HIC; and the related problem of stress oriented hydrogen induced cracking, SOHIC) and CO 2 corrosion is available...
Abstract
This chapter discusses the particular corrosion problems encountered and the methods of control used in petroleum production and the storage and transportation of oil and gas up to the refinery. It begins by describing those aspects of corrosion that tend to be unique to corrosion as encountered in applications involving oil and gas exploration and production. This is followed by a section reviewing the methods of corrosion control, namely the proper selection of materials, protective coatings, cathodic protection systems, use of inhibitors, use of nonmetallic materials, and control of the environment. The chapter ends with a discussion on the problems encountered and protective measures that are based on the state-of-the-art as practiced daily by corrosion and petroleum engineers and production personnel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080379
EISBN: 978-1-62708-304-1
... on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically...
Abstract
This chapter discusses two damage mechanisms in which stress plays a major role. In the one case, stress causes cracks in the oxide scale on metals, leading to preferential corrosion attack. An example from industry of this type of failure is the circumferential cracking that occurs on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically occurs at the lower end of the intermediate temperature range and has been observed in ferritic steels, stainless steels, Fe-Ni-Cr alloys, and nickel-base alloys, as described in the chapter.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090095
EISBN: 978-1-62708-266-2
... descriptors. Cracking that results from the presence of hydrogen in a stainless steel and the presence of a tensile stress (residual and/or applied) is described as HE or hydrogen stress cracking (HSC). Hydrogen embrittlement that occurs in the presence of hydrogen sulfide is known as sulfide stress...
Abstract
This chapter takes a practical approach to the problem of stress-corrosion cracking (SCC) in stainless steels, explaining how different application environments affect different grades of stainless steel. It describes the causes of stress-corrosion cracking in chloride, caustic, polythionic acid, and high-temperature environments and the correlating effects on austenitic, ferritic, duplex, martensitic, and precipitation hardening stainless steels and nickel-base alloys. It also discusses the contributing effects of sensitization and hydrogen embrittlement and the role of composition, microstructure, and thermal history. Sensitization is particularly detrimental to austenitic stainless steels, and in many cases, eliminating it will eliminate the susceptibility to SCC. The chapter includes an extensive amount of data and illustrations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
... corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820115
EISBN: 978-1-62708-339-3
... in martensitic stainless steels and describes sulfide stress corrosion resistance of type 410 weldments. hydrogen-induced cracking martensitic stainless steel sulfide stress corrosion resistance weld corrosion welding weldments MARTENSITIC STAINLESS STEELS are essentially Fe-Cr-C alloys...
Abstract
Martensitic stainless steels are essentially iron-chromium-carbon alloys that possess a body-centered tetragonal crystal structure (martensitic) in the hardened condition. Martensitic stainless steels are similar to plain carbon or low-alloy steels that are austenitized, hardened by quenching, and then tempered for increased ductility and toughness. This chapter provides a basic understanding of grade designations, properties, corrosion resistance, and general welding considerations of martensitic stainless steels. It also discusses the causes for hydrogen-induced cracking in martensitic stainless steels and describes sulfide stress corrosion resistance of type 410 weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030148
EISBN: 978-1-62708-282-2
... observed in most commercial alloy systems; however, hydrogen stress cracking usually produces sharp, singular cracks in contrast to the extensive branching observed for stress-corrosion cracking (SCC). The catastrophic cracking of steels in hydrogen sulfide (H 2 S) environments, referred to as sulfide...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum, copper, titanium, zirconium, vanadium, niobium, and tantalum alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.9781627082662
EISBN: 978-1-62708-266-2
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
... and sulfide stress cracking). A PWHT stress relief has also been reported to be beneficial in reducing HAZ attack ( Ref 8 ). However, in other cases, avoidance through selection of appropriate material or welding procedure is the preferred remedial approach, because PWHT may necessitate temperatures high...
Abstract
Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld and heat-affected zone (HAZ), solid-state phase transformations during welding, control of toughness in the HAZ, the effects of preheating and postweld heat treatment, and weld discontinuities. This chapter provides information on the classification of steels and the welding characteristics of each class. It describes the issues related to corrosion of carbon steel weldments and remedial measures that have proven successful in specific cases. The major forms of environmentally assisted cracking affecting weldment corrosion are covered. The chapter concludes with a discussion of the effects of welding practice on weldment corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910497
EISBN: 978-1-62708-250-1
... factor. Environmental cracking is a general term that includes corro- sion fatigue, high-temperature hydrogen attack, hydrogen blister- Glossary of Corrosion-Related Terms 505 ing, hydrogen embrittlement, liquid metal embrittlement, stress- corrosion cracking, and sulfide stress cracking. The following...