1-20 of 474 Search Results for

sulfidation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080201
EISBN: 978-1-62708-304-1
... Abstract Sulfur is one of the most common corrosive contaminants in high-temperature industrial environments and its presence can cause a number of problems, including sulfidation. This chapter describes the sulfidation behavior of a wide range of alloys as observed in three types of industrial...
Image
Published: 01 December 2015
Fig. 9 Example of high-temperature sulfidation attack in a type 310 heat-exchanger tube after ~100 h at 705 °C (1300 °F) in coal-gasifier product gas More
Image
Published: 01 December 2015
Fig. 11 Sulfidation attack of alloy 800 test coupons exposed to a coal-gasifier environment ( p O 2 = 3 × 10 −20 atm and p S 2 = 1 × 10 −7 atm) at 870 °C (1600 °F) for 100 h. (a) and (b) Macrograph and micrograph, respectively, of a test coupon with a 0.254 mm (0.01 in.) diam grain More
Image
Published: 01 November 2007
Fig. 7.41 Sulfidation resistance of alloy HR160 compared to those of alloys 556, 800H, and 600 after 215 h at 870 °C (1600 °F) in Ar-5H 2 -5CO-1CO 2 -0.15H 2 S ( p O 2 = 3×10 –19 atm, p S 2 = 0.9 × 10 –6 atm). Samples were cathodically descaled before being mounted for metallographic More
Image
Published: 01 November 2007
Fig. 13.16 Effect of chromium on sulfidation resistance of steels containing various amounts of chromium tested at 400 °C (750 °F) in N 2 -15H 2 O-10CO 2 -10H 2 -0.1O 2 -0.1H 2 S. Source: Ref 44 More
Image
Published: 01 November 2007
Fig. 14.17 Preferential sulfidation penetration (a precursor of the circumferential cracking) observed on a T-22 (2.25Cr-1Mo) wingwall tube of a supercritical boiler, showing ″channels″ (light color stringers) in the core of the penetration. Courtesy of Welding Services Inc. More
Image
Published: 01 November 2007
Fig. 14.19 Preferential sulfidation penetration formed in waterwall steel tubes More
Image
Published: 01 November 2007
Fig. 7.1 Alloy 601 tube suffering localized sulfidation attack. The tube was in service at about 930 °C (1700 °F) in a natural gas-fired furnace making ceramic tiles. Sulfur was believed to come from the ceramic feedstock. More
Image
Published: 01 November 2007
Fig. 7.2 Alloy 800H recuperator suffering severe sulfidation attack in a nonferrous metal scrap melting furnace. The 9.5 mm (0.4 in) thick recuperator was perforated in less than 2 years at metal temperatures of about 650 to 760 °C (1200 to 1400 °F). (a) General view of a corroded sample. (b More
Image
Published: 30 September 2023
Figure 5.10: Lubrication of a steel surface by sulfur, where sulfide layers act as a boundary lubricant. More
Image
Published: 01 August 2018
Fig. 8.68 Micrograph of as-cast steel containing a network of iron sulfide. The low melting point of the sulfide makes it the last to solidify, forming the network (or continuous “films”) on the grain boundaries. The material is then brittle at high temperature (“hot shortness”) (see Fig More
Image
Published: 01 August 2018
Fig. 8.69 Micrographs of as-cast steel containing iron sulfide network (a) and globular manganese sulfide (b). No etching. The amount and size of the nonmetallic inclusions shown in this and Fig. 8.68 are almost impossible to find in modern steels produced with current refining processes More
Image
Published: 01 August 2018
Fig. 8.70 Micrograph of steel containing iron sulfide, hot worked. The presence of the sulfide in the grain boundaries has caused hot shortness (cracks are evident). No etching. More
Image
Published: 01 August 2018
Fig. 8.76 (a) Sulfide nonmetallic inclusion in as-cast steel. SEM, BE. No etching (b) EDS spectrum of the inclusion. Quantitative analysis calculated from EDS results. Manganese sulfide. More
Image
Published: 01 August 2018
Fig. 11.22 Manganese sulfide inclusions elongated in the longitudinal directions (parallel to the direction of larger elongation during hot working) in stainless steel AISI 304. Not etched. Courtesy of Villares Metals S.A. Sumaré, SP, Brazil. More
Image
Published: 01 August 2018
Fig. 11.23 Manganese sulfide inclusions elongated in the longitudinal directions (parallel to the direction of larger elongation during hot working) in a plate of structural steel. Not etched. Courtesy NIST (National Institute of Standards and Technology), Gaithersburg, MD, USA. Source: Ref More
Image
Published: 01 August 2018
Fig. 17.60 Gray cast iron. Graphite and polyhedral manganese sulfide in the interdendritic spaces. Not etched. More
Image
Published: 01 September 2008
Fig. 28 Scanning electron micrograph of sulfide stringers in a piece of bar stock More
Image
Published: 01 December 2018
Fig. 5.4 Oxide and sulfide inclusions in a boiler tube sample More
Image
Published: 01 March 2006
Fig. 2 Manganese sulfide inclusions in resulfurized free-machining steel. Unetched (as-polished). Original magnification: 500×. Source: Ref 6 More