1-20 of 309 Search Results for

substitutional diffusion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 September 2022
Fig. 4 Illustrative example of vacancy diffusion or substitutional diffusion More
Image
Published: 01 June 2008
Fig. 5.2 Interstitial and substitutional diffusion More
Image
Published: 01 December 2008
Fig. 6.11 The elementary processes of diffusion of substitutional atoms (B) and interstitial atoms (I). (a) The model for diffusion by vacancy mechanism. (b) The model for interstitial diffusion. The bold dotted line in (a) is the energy curve when no vacancy exists on the lattice point 2. More
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240063
EISBN: 978-1-62708-251-8
... Abstract Diffusion is the movement of atoms through the crystalline lattice. This chapter discusses the two main types of diffusion that can occur in solids: interstitial diffusion and substitutional diffusion. It describes Fick's first and second laws of diffusion, with emphasis on several...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
.... It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing...
Image
Published: 01 January 2015
Fig. 3.17 Diffusivity of substitutional, interstitial, and hydrogen atoms in steel as a function of temperature. Source: Ref 3.33 More
Image
Published: 01 September 2022
Fig. 3 Schematic illustration of the activation energy required for an atom to migrate in vacancy/substitutional diffusion More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.9781627084321
EISBN: 978-1-62708-432-1
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240041
EISBN: 978-1-62708-251-8
.... It describes the intermediate phases that are formed during solidification between the two extremes of substitutional solid solution on the one hand and intermetallic compound on the other. The chapter concludes with a section on strain aging in low-carbon steels that allows the interstitial atoms to diffuse...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... austenitic condition. It would “rather” be partly ferritic, but the substitutional diffusion of chromium in austenite that is required to form a ferrite phase of a separate composition is so slow that it cannot occur in terrestrial time frames. However, if energy is applied by mechanical shear, the austenite...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420143
EISBN: 978-1-62708-310-2
.... The two types of solid solutions impart different characteristics. For example, interstitial carbon can easily diffuse through the open bcc lattice, whereas substitutional elements diffuse much more slowly. Therefore, carbon responds quickly during heat treatment, whereas substitutional alloying elements...
Image
Published: 31 December 2020
Fig. 8 Diffusion coefficients ( D ) of interstitial elements (hydrogen, carbon, nitrogen) compared with substitutional elements in alpha iron. Adapted from: Ref 5 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310109
EISBN: 978-1-62708-286-0
.... Formation requires substitutional diffusion of chromium so is slower to form than carbides, minutes rather than seconds. Since cold work enhances substitutional diffusion, it accelerates σ formation. The σ forms preferentially along grain boundaries for diffusion reasons, and this causes it to have a major...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050031
EISBN: 978-1-62708-432-1
... Abstract This chapter familiarizes readers with the use of Fick’s laws of diffusion in heat treating, coating, and other metallurgical processes. It contains worked solutions to nearly 30 problems requiring the calculation of activation energy, diffusion coefficient, concentration level...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
...-packed, and body-centered cubic. It then describes the four main divisions of crystal defects, namely point defects, line defects, planar defects, and volume defects. The chapter provides information on grain boundaries of metals, processes involved in atomic diffusion, and key properties of a solid...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940087
EISBN: 978-1-62708-302-7
... as a function of current density or charge transfer in a given area. The chapter explains how to measure and plot electrode potentials and currents and how to interpret the resulting polarization curves. It also discusses the effects of concentration gradients, explaining how they cause diffusion and, in some...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240153
EISBN: 978-1-62708-251-8
... impart different characteristics. For example, interstitial carbon can easily diffuse through the open bcc lattice, whereas substitutional elements diffuse much more slowly. Therefore, carbon responds quickly during heat treatment, whereas substitutional alloying elements behave more sluggishly...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420015
EISBN: 978-1-62708-310-2
... atoms. It discusses the difference between interstitial and substitutional solid solutions and the factors that determine the type of solution that two metals are likely to form. It also addresses the development of intermediate phases, the role of free energy, transformation kinetics, liquid-to-solid...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310029
EISBN: 978-1-62708-326-3
... to another—unlike larger atoms (which can only jump by “substitution” into the vacancies within a crystal lattice). This, along with the effect of temperature on diffusion, makes carbon atoms very mobile during solid-state heating. The other important metallurgical phenomenon is the allotropy of iron...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.pb.t5123000x
EISBN: 978-1-62708-351-5
... F), diffusion during heating produces a liquid phase, which fuses the silver sheets to the copper plate. This material is then rolled down to a thinner sheet, and this was exploited by the industrial pioneer Matthew Boulton in the second half of the 18th century as a cheap substitute for solid...