Skip Nav Destination
Close Modal
Search Results for
structure analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 170 Search Results for
structure analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870421
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses some of the challenges associated with the analysis of composite structures. It begins with a review of lamina fundamentals and the stress-strain relationships in a single ply under various types of loads. It demonstrates the use of classical lamination theory...
Abstract
This chapter discusses some of the challenges associated with the analysis of composite structures. It begins with a review of lamina fundamentals and the stress-strain relationships in a single ply under various types of loads. It demonstrates the use of classical lamination theory, discusses the effects of interlaminar free-edge stresses, and explains how to predict the failure of composites using stress and strain criteria as well as the Azzi-Tsai-Hill maximum work theory and the Tsai-Wu failure criterion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420363
EISBN: 978-1-62708-310-2
... Abstract This appendix provides a detailed overview of the crystal structure of metals. It describes primary bonding mechanisms, space lattices and crystal systems, unit cell parameters, slip systems, and crystallographic planes and directions as well as plastic deformation mechanisms...
Abstract
This appendix provides a detailed overview of the crystal structure of metals. It describes primary bonding mechanisms, space lattices and crystal systems, unit cell parameters, slip systems, and crystallographic planes and directions as well as plastic deformation mechanisms, crystalline imperfections, and the formation of surface or planar defects. It also discusses the use of X-ray diffraction for determining crystal structure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280211
EISBN: 978-1-62708-267-9
... Abstract This chapter examines the effect of heat treating and other processes on the microstructure-property relationships that occur in superalloys. It discusses precipitation and grain-boundary hardening and how they influence the phases, structures, and properties of various alloys. It...
Abstract
This chapter examines the effect of heat treating and other processes on the microstructure-property relationships that occur in superalloys. It discusses precipitation and grain-boundary hardening and how they influence the phases, structures, and properties of various alloys. It explains how the delta phase, which is used to control grain size in IN-718, improves strength and prevents stress-rupture embrittlement. It describes heat treatments for different product forms, discusses the effect of tramp elements on grain-boundary ductility, and explains how section size and test location influence measured properties. It also provides information and data on the physical and mechanical properties of superalloys, particularly tensile strength, creep-rupture, fatigue, and fracture, and discusses related factors such as directionality, porosity, orientation, elongation, and the effect of coating and welding processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.9781627083010
EISBN: 978-1-62708-301-0
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130395
EISBN: 978-1-62708-284-6
... hardness conforming to specification and product with low hardness were subjected to standard metallographic analysis. The product with low hardness revealed a predominantly ferritic structure with free copper ( Fig. 16 ), even though the blend graphite addition was 0.8% ( Fig. 17 ). Thus, undersintering...
Abstract
This chapter reviews failure aspects of structural ferrous powder metallurgy (PM) parts, which form the bulk of the PM industry. The focus is on conventional PM technology of parts in the density range of 6 to 7.2 g/cc. The chapter briefly introduces the processing steps that are essential to understanding failure analysis of PM parts. This is followed by a section on case hardening of PM parts. The methods used for analyzing the failures are then discussed. Some case studies are given that illustrate different failures and the methods of prevention of these failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110025
EISBN: 978-1-62708-247-1
... functionality has to be maintained during the process. This leads to the requirement of adding additional techniques that help isolate and image defects that are buried deeply within the board structure. This article demonstrates an approach of advanced board level failure analysis by using several non...
Abstract
In embedded systems, the separation between system level, board level, and individual component level failure analysis is slowly disappearing. In order to localize the initial defect area, prepare the sample for root cause analysis, and image the exact root cause, the overall functionality has to be maintained during the process. This leads to the requirement of adding additional techniques that help isolate and image defects that are buried deeply within the board structure. This article demonstrates an approach of advanced board level failure analysis by using several non-destructive localization techniques. The techniques considered for advanced fault isolation are magnetic current imaging for shorts and opens; infrared thermography for electrical shorts; time-domain-reflectometry for shorts and opens; scanning acoustic microscopy; and 2D/3D X-Ray microscopy. The individual methods and their operational principles are introduced along with case studies that will show the value of using them on board level defect analysis.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110506
EISBN: 978-1-62708-247-1
... Abstract Semiconductor memories are superb drivers for process yield and reliability improvement because of their highly structured architecture and use of aggressive layout rules. This combination provides outstanding failure signature analysis possibilities for the entire design...
Abstract
Semiconductor memories are superb drivers for process yield and reliability improvement because of their highly structured architecture and use of aggressive layout rules. This combination provides outstanding failure signature analysis possibilities for the entire design, manufacturing, and test process. This article discusses five key disciplines of the signature analysis process that need to be orchestrated within the organization: design for test practices, test floor data collection methodology, post-test data analysis tools, root cause theorization, and physical failure analysis strategies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
...-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process. brazing ceramic processing diffusion bonding structural ceramics toughened ceramics weibull analysis...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110563
EISBN: 978-1-62708-247-1
... product or product family. The commonality in MEMS devices with respect to FA is that the structures are free moving and have some electrical function. A useful framework for proceeding down a failure analysis flow is to first try to isolate the source of the failure to a) the MEMS, b) the electronics...
Abstract
This chapter discusses the various failure analysis techniques for microelectromechanical systems (MEMS), focusing on conventional semiconductor manufacturing processes and materials. The discussion begins with a section describing the advances in integration and packaging technologies that have helped drive the further proliferation of MEMS devices in the marketplace. It then shows some examples of the top MEMS applications and quickly discusses the fundamentals of their workings. The next section describes common failure mechanisms along with techniques and challenges in identifying them. The chapter also provides information on the testing of MEMS devices. It covers the two common challenges in sample preparation for MEMS: decapping, or opening up the package, without disturbing the MEMS elements; and removing MEMS elements for analysis. Finally, the chapter discusses the aspects of failure analysis techniques that are of particular interest to MEMS.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780147
EISBN: 978-1-62708-268-6
... analysis to evaluate spring performance at tolerance extremes. Chapter 1 mentions the Apache helicopter main rotor blade failures. McDonnell Douglas Helicopter Company engineers designed the Apache helicopter blade (a bonded stainless steel, carbon fiber, and titanium structure) to withstand a direct...
Abstract
In some cases, the failure analysis team finds that all components meet their requirements, the system was properly assembled, and it was not operated or tested in an out-of-specification manner, yet it still failed. When this occurs, the only conclusion the failure analysis team can reach is that it missed something in its analysis or that the design is defective. This chapter focuses on the latter possibility by discussing the various factors that a failure analysis team should consider to identify the causes of defects in system design. These include requirements identification and verification, circuit performance, mechanical failures, materials compatibility, and environmental factors. Examples that illustrate the value of design analysis are also presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110550
EISBN: 978-1-62708-247-1
... these 2.5D and 3D packages. This article focuses on these methods of fault isolation, non-destructive imaging, and destructive techniques through an iterative process for failure analysis of complex packages. 2.5D packaging 3D packaging destructive techniques failure analysis fault isolation...
Abstract
The complexity of semiconductor chips and their packages has continuously challenged the known methods to analyze them. With larger laminates and the inclusion of multiple stacked die, methods to analyze modern semiconductor products are being pushed toward their limits to support these 2.5D and 3D packages. This article focuses on these methods of fault isolation, non-destructive imaging, and destructive techniques through an iterative process for failure analysis of complex packages.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110062
EISBN: 978-1-62708-247-1
... semiconductor packaging structures have prompted X-ray equipment manufacturers to significantly improve the 3D micro-CT imaging capability [11 , 12] . Most X-ray equipment manufacturers now provide 3D models with fully automated data acquisition, reconstruction, and data analysis packages. In a typical 3D...
Abstract
X-ray imaging systems have long played a critical role in failure analysis laboratories. This article begins by listing several favorable traits that make X-rays uniquely well suited for non-destructive evaluation and testing. It then provides information on X-ray equipment and X-ray microscopy and its application in failure analysis of integrated circuit (IC) packaging and IC boards. The final section is devoted to the discussion on nanoscale 3D X-ray microscopy and its applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110196
EISBN: 978-1-62708-247-1
... Abstract This article reviews the basic physics behind active photon injection for local photocurrent generation in silicon and thermal laser stimulation along with standard scanning optical microscopy failure analysis tools. The discussion includes several models for understanding the local...
Abstract
This article reviews the basic physics behind active photon injection for local photocurrent generation in silicon and thermal laser stimulation along with standard scanning optical microscopy failure analysis tools. The discussion includes several models for understanding the local thermal effects on metallic lines, junctions, and complete devices. The article also provides a description and case study examples of multiple photocurrent and thermal injection techniques. The photocurrent examples are based on Optical Beam-Induced Current and Light-Induced Voltage Alteration. The thermal stimulus examples are Optical Beam-Induced Resistance Change/Thermally-Induced Voltage Alteration and Seebeck Effect Imaging. Lastly, the article discusses the application of solid immersion lenses to improve spatial resolution.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130503
EISBN: 978-1-62708-284-6
... Abstract Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel...
Abstract
Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel weldment. These include poor workmanship, a variety of hydrogen-assisted cracking failures, stress-corrosion cracking, fatigue, and solidification cracking in steel welds. Hydrogen-assisted cracking can appear in four common forms, namely underbead or delayed cracking, weld metal fisheyes, ferrite vein cracking, and hydrogen-assisted reduced ductility.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130111
EISBN: 978-1-62708-284-6
... all significant features have been carefully documented by photography (Ref 2) . In addition to locating the failure origin, visual analysis is necessary to reveal stress concentrations, material imperfections, presence of surface coatings, case-hardened regions, welds, and other structural...
Abstract
This chapter briefly outlines some of the basic aspects of failure analysis, describing some of the basic steps and major concerns in conducting a failure analysis. A brief review of failure types from fracture, distortion, wear-assisted failure, and environmentally assisted failure (corrosion) is also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.9781627082815
EISBN: 978-1-62708-281-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110032
EISBN: 978-1-62708-247-1
... Abstract The management of a failure analysis (FA) laboratory requires a broad range of activities to optimize the efficiency of the operation. The purpose of this article is to stimulate readers to consider the various aspects of FA laboratory operations and their respective business...
Abstract
The management of a failure analysis (FA) laboratory requires a broad range of activities to optimize the efficiency of the operation. The purpose of this article is to stimulate readers to consider the various aspects of FA laboratory operations and their respective business management requirements. The various aspects include: staffing, laboratory organization, lab design and operations, strategic development, financial management, and metrics and measurements. References for further reading and examples of resource materials are also included.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780001
EISBN: 978-1-62708-268-6
... likelihood of each, identifying the potential solutions, and identifying the best solution. The chapter concludes by describing the responsibilities of a failure analysis team. failure analysis problem-solving process system failure THIS BOOK FOCUSES ON solving systems failures. Other books...
Abstract
This chapter focuses on what can cause a system to fail and addresses the challenge in approaching a system failure. It then examines the steps involved in the four-step problem-solving process: defining the problem, identifying all potential failure causes and evaluating the likelihood of each, identifying the potential solutions, and identifying the best solution. The chapter concludes by describing the responsibilities of a failure analysis team.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110485
EISBN: 978-1-62708-247-1
... structure of a small area of an aluminum-copper bond pad. The grain structure and grain boundaries are clearly visible. For this particular analysis, known good bond pads were compared to problematic pads in order to understand if there was a discernable difference in the surface and grain structure between...
Abstract
Scanning Probe Microscope (SPM) has an increasing important role in the development of nanoscale semiconductor technologies. This article presents a detailed discussion on various SPM techniques including Atomic Force Microscopy (AFM), Scanning Kelvin Probe Microscopy, Scanning Capacitance Microscopy, Scanning Spreading Resistance Microscopy, Conductive-AFM, Magnetic Force Microscopy, Scanning Surface Photo Voltage Microscopy, and Scanning Microwave Impedance Microscopy. An overview of each SPM technique is given along with examples of how each is used in the development of novel technologies, the monitoring of manufacturing processes, and the failure analysis of nanoscale semiconductor devices.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110524
EISBN: 978-1-62708-247-1
... capabilities of many key optoelectronic failure analysis tools. The final section describes the common steps that should be followed so as to assure product reliability of optoelectronic components. failure analysis light emitting diodes optoelectronic devices product reliability semiconductor lasers...
Abstract
Optoelectronic components can be readily classified as active light-emitting components (such as semiconductor lasers and light emitting diodes), electrically active but non-emitting components, and inactive components. This chapter focuses on the first category, and particularly on semiconductor lasers. The discussion begins with the basics of semiconductor lasers and the material science behind some causes of device failure. It then covers some of the common failure mechanisms, highlighting the need to identify failures as wearout or maverick failures. The chapter also covers the capabilities of many key optoelectronic failure analysis tools. The final section describes the common steps that should be followed so as to assure product reliability of optoelectronic components.