Skip Nav Destination
Close Modal
Search Results for
structural steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2533 Search Results for
structural steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Hot Working
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 11.16 Sulfur print of a thick rolled plate of structural steel WStE355. Section transverse to the main rolling direction, region corresponding to the top of the conventional ingot used to roll the plate, in mid-width. Some concentration of sulfides can be seen, elongated in the transverse
More
Image
in Hot Working
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 11.67 Cross section of a structural steel plate (ferrite and pearlite) that was exposed to a building fire. Oxidation with the formation of a thick layer of oxides in the plate surface, and a region that suffered partial decarburization. The kinetics of the oxidation
More
Image
in Structural Steels and Steels for Pressure Vessels, Piping, and Boilers
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 14.29 Transverse cross section to a weld in structural steel with yield strength of 379 MPa (55 ksi) (see Fig. 14.1 ). At the top of the image is the weld-deposited metal. The base of the image shows the region of grain refinement. Compare to Fig. 14.28 . Etchant: nital 2% and picral 4
More
Image
in Conventional Heat Treatments—Usual Constituents and Their Formation
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 9.81 Structural steel containing C = 0.08%, Si = 0.19%, Mn = 1.47%, S = 0.004%, Ti = 0.012%. Determining the nucleation conditions for intragranular ferrite (acicular) in a complex nonmetallic inclusion. Simulated welding thermal cycle: heating to 1440 °C (2625 °F) for 4 s followed
More
Image
in Conventional Heat Treatment—Basic Concepts
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 10.2 (Part 1) Structural steel subjected to heat treatment at 625 °C (1155 °F) for different times. The spheroidization of the carbides with increasing holding times is evident. (a) Specified strength of 413 MPa (60 ksi), with a starting microstructure of ferrite and fine pearlite. (b
More
Image
in Conventional Heat Treatment—Basic Concepts
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 10.2 (Part 2) Structural steel subjected to heat treatment at 625 °C (1155 °F) for different times. (c) Specified strength of 690 MPa (100 ksi), produced using quenching and tempering heat treatment (see the sections “ Quenching and Tempering ” and “ Tempering ” in this chapter
More
Image
in Conventional Heat Treatment—Basic Concepts
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Fig. 10.19 Longitudinal cross section of a thick plate of structural steel WStE355 (C = 0.19%, Mn = 1.2%) 38 mm (1.5 in.) thick, normalized. In this figure, the longitudinal direction of the plate is along the vertical direction. (a) Surface region of the plate (on the left side, slight
More
Image
in Introduction to Steels and Cast Irons
> Metallographer’s Guide<subtitle>Practices and Procedures for Irons and Steels</subtitle>
Published: 01 March 2002
Fig. 1.5 Micrograph of ASTM A 36 structural steel showing a microstructure consisting of ferrite (light etching constituent) and pearlite (dark etching constituent). Etched in 4% picral followed by 2% nital. 200×
More
Image
Published: 01 December 1996
Fig. 8-34 Diagram showing for a structural steel the recrystallization process as a function of the reduction in thickness by rolling and the rolling temperature. The numbers in the circles are ASTM grain size values. (From same source as Fig. 8-27 )
More
Image
Published: 01 December 1996
Fig. 8-43 Schematic illustration of the hot rolling process used for structural steels. The width of the cross-hatched area is an indication of the plate thickness. (Adapted from J.K. Baird and R.R. Preston, in Processing and Properties of Low Carbon Steel , The Metallurgical Society
More
Image
Published: 01 December 1996
Fig. 8-44 A continuous cooling TTT diagram for a structural steel, showing a cooling curve typically used in making sheet material. (From J.D. Grozier, in MicroAlloying 75 , p 241, Union Carbide Corp., New York (1977), Ref 21 )
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560263
EISBN: 978-1-62708-353-9
.... Ballace, editor, The Metallurgical Society, Warrendale, PA (1977), Ref 10 ) Fig. 8-26 Effect of primary ferrite grain size on the yield strength of plain carbon structural steels and such steels containing niobium. (Adapted from K.J. Irvine, J. Iron and Steel Institute , Vol 207, p 837 (1969...
Abstract
Structural steels are used for components such as I-beams and automobile frames. This chapter focuses on processing these steels to attain a fine primary ferrite grain size to develop high strength. It first reviews the concepts and principles of recrystallization in plastically deformed metals. The chapter reviews the concepts of annealing of cold worked metals. It then looks at hot working and the grain size associated with it. Additionally, the chapter reviews the methods of strengthening in the steels that rely mainly on reduction in the primary ferrite grain size. It discusses basic methods used to develop a small austenite grain size, and hence a small primary ferrite grain size. Then, the chapter covers the processes involved in the precipitation hardening of the ferrite. Finally, it examines some commercial thermomechanical processes used on structural steels, namely hot deformation and controlled cooling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.lmcs.t66560081
EISBN: 978-1-62708-291-4
... Abstract This chapter covers a broad range of low-carbon steels optimized for structural applications. Low-carbon structural steels are generally considered the highest-strength steels that can be welded without undue difficulty, even in the field. They include mild steels, carbon-manganese...
Abstract
This chapter covers a broad range of low-carbon steels optimized for structural applications. Low-carbon structural steels are generally considered the highest-strength steels that can be welded without undue difficulty, even in the field. They include mild steels, carbon-manganese and niobium- and vanadium-containing steels, and high-strength low-alloy steels. Chapter 5 discusses the composition, microstructure, and properties of these workhorse materials and explains how to identify the cause of production-related issues such as lamellar tearing and ferrite-pearlite banding. It also describes some of the alloying variations that have been developed to improve machinability and the mechanisms by which they work.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220475
EISBN: 978-1-62708-259-4
... Abstract This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural applications. It covers fine-grained steels, quenched and tempered steels, and controlled rolled (thermomechanical treatment) steels. It also compares...
Abstract
This chapter discusses the properties and compositions of steels used in pressure vessels, piping, boilers, rebar, and other structural applications. It covers fine-grained steels, quenched and tempered steels, and controlled rolled (thermomechanical treatment) steels. It also compares and contrasts steels used for concrete reinforcement and in various types of pressure vessels, and presents a metallographic study of the effects of welding on the micro and macrostructure of steel.
Image
in Solidification, Segregation, and Nonmetallic Inclusions
> Metallography of Steels<subtitle>Interpretation of Structure and the Effects of Processing</subtitle>
Published: 01 August 2018
Image
in Metallic Joints: Mechanically Fastened and Welded
> Fatigue and Fracture: Understanding the Basics
Published: 01 November 2012
Image
in Tribological Properties of Steels
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 8.1 Steel shapes available from suppliers: (a) structural shapes, (b) coiled strip and sheet, (c) plate, (d) coiled wire, (e) rod, (f) rounds, (g) pipe, (h) tubing, (i) pigs, (j) ingots, (k) rail, (l) rebar, (m) forgings
More
Image
Published: 01 December 1999