Skip Nav Destination
Close Modal
Search Results for
structural polymers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 360 Search Results for
structural polymers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
...Physical and mechanical properties of polymers used in accelerated fatigue evaluation study Table 12.1 Physical and mechanical properties of polymers used in accelerated fatigue evaluation study Property Polymer Polypropylene Nylon 6/6 Polycarbonate Polymer structure...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Image
Published: 01 December 2003
Fig. 8 Polymer structure. The spheres represent the repeating units of the polymer chain, not individual atoms. Source: Ref 7
More
Image
Published: 01 August 2013
Fig. 9.1 Structure of several linear polymers. Kevlar is a registered tradename of E.I. du Pont de Nemours and Company. Source: Ref 9.1
More
Image
Published: 01 November 2012
Fig. 12 Comparison of thermoset and thermoplastic polymer structures. Source: Adapted from Ref 10
More
Image
in Tribology of Plastics and Elastomers
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Image
Published: 01 November 2010
Image
Published: 30 April 2020
Fig. 3.6 Summary of the repeating unit structures for common polymers. The degree of polymerization depends on the number of repeating units.
More
Image
Published: 01 October 2012
Image
Published: 01 December 2003
Fig. 13 Mer chemical structure of representative hydrocarbon thermo-plastic polymers (see Table 6 for glass-transition temperatures)
More
Image
Published: 01 December 2003
Image
Published: 01 December 2003
Fig. 17 Mer chemical structure of representative thermoplastic polymers for high-temperature service
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... structure PLASTICS are so prevalent in our lives that it is easy to overlook the vast differences in their properties and how specialized many polymers have become. Consider the differences between aramid bulletproof vests and the polyurethane foam used in pillows. Why can plates made of crystallized...
Abstract
This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780003
EISBN: 978-1-62708-281-5
... Abstract This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most...
Abstract
This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most important properties of polymers and the most significant influences of structure on those properties are covered. The article also includes some general information on the classification and naming of polymers and plastics.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
... Matrix in the Processing and Structural Properties of Composite Materials , Nicolais L. and Seferis J.C. , Ed., Plenum Press , New York , 1983 2. Rodriguez F. , Principles of Polymer Systems , Hemisphere Publishing Co. , New York , 1989 3. Billmeyer F.W...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.t52320001
EISBN: 978-1-62708-357-7
... solution. Fig. 1.2 The structure of a macromolecule corresponds to the internal structure of a metal or ceramic, if a primary structure is considered to be analogous to a molecular structure and a higher-order structure to a microstructure. These polymer structures are called primary...
Abstract
This chapter explains the distinction between materials and matter through the concept of microstructure. It presents the history of matter science and the establishment of metallography. The chapter provides an overview of the progress of steel technology, progress in synthetic polymers and ceramics, and establishment and development of materials science.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780146
EISBN: 978-1-62708-281-5
..., photo-oxidative degradation, environmental corrosion, and chemical corrosion of polymers. It also includes some of the techniques used to detect changes in structure during polymer exposure to hostile environments. In addition, the article describes the effects of environment on polymer performance...
Abstract
This article discusses the chemical susceptibility of a polymeric material. The discussion covers significant absorption and transportation of an environmental reagent by the polymer; the chemical susceptibility of additives; and thermal degradation, thermal oxidative degradation, photo-oxidative degradation, environmental corrosion, and chemical corrosion of polymers. It also includes some of the techniques used to detect changes in structure during polymer exposure to hostile environments. In addition, the article describes the effects of environment on polymer performance, namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780343
EISBN: 978-1-62708-281-5
... the design engineer. The article ends with a discussion on the thermal-analytical scheme for analyzing the milligram quantities of polymer samples. problem-solving approach structure analysis infrared spectroscopy nuclear magnetic resonance spectroscopy molecular weight thermal analysis X-ray...
Abstract
This article introduces procedures an engineer or materials scientist can use to investigate failures. It provides a brief survey of polymer systems and key properties that need to be measured during failure analysis. The article begins with an overview of the problem-solving approach pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal analysis, namely differential thermal analysis, thermogravimetric analysis, thermal-mechanical analysis, and dynamic mechanical analysis. The following sections provide details on X-ray diffraction for analyzing crystalline phases and on a minimal scheme for polymer analysis and characterization to assist the design engineer. The article ends with a discussion on the thermal-analytical scheme for analyzing the milligram quantities of polymer samples.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.tm.9781627083577
EISBN: 978-1-62708-357-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780404
EISBN: 978-1-62708-281-5
.... fractography crack propagation polymers ductile fracture brittle fracture THERE ARE MANY CAUSES AND FORMS of fracture, and careful analysis of fractured parts requires an understanding of the component design, service loading, environments, and structure-property relationships, the application...
Abstract
This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis of macroscopic appearance, and the examination and interpretation of the features of fracture surfaces. In addition, the article considers several cases of field failure in various polymers to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
1