Skip Nav Destination
Close Modal
Search Results for
stretch draw forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 172 Search Results for
stretch draw forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 July 2009
Fig. 20.11 Illustrations of techniques involved in the four basic methods of stretch forming: (a) and (b) stretch draw forming, (c) stretch wrapping, (d) compression forming, and (e) radial-draw forming. Source: ASM 1988b
More
Image
Published: 30 June 2023
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740163
EISBN: 978-1-62708-308-9
... Abstract This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die...
Abstract
This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die materials and lubricants along with superplastic forming techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
... Abstract This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming. hot working cold working bulk deformation rolling forging extrusion sheet metal forming blanking piercing bending stretch forming drawing rubber pad forming...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700177
EISBN: 978-1-62708-279-2
... Metal Using the Demeri Split Ring Test” was issued, under the designation E2492-07, to evaluate the springback behavior of metals in a test that simulates a stretch-draw forming process. The test method can also be used to calibrate computer simulation codes by selecting appropriate control parameters...
Abstract
This chapter describes the nature of the problems arising from using advanced high-strength steels (AHSS) and discusses potential remedies to minimize the adverse effects that may limit the adoption of AHSS in the automotive industry. The discussion provides information on press energy, springback, residual stress, die wear, hot forming, downgaging limits, welding, binders, draw beads, and tool material wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310173
EISBN: 978-1-62708-286-0
... processes involved in sheet-forming techniques, namely stretch forming and deep drawing. In addition, it provides information on some of the factors pertinent to cold-heading and hot forming of stainless long products. deformation strain hardening anisotropy sheet forming stainless steel long...
Abstract
The various types of stainless steel have very different deformation characteristics in terms of strain hardening and anisotropy. It is important to understand and exploit these characteristics to optimize forming of stainless steels. This chapter discusses the various deformation processes involved in sheet-forming techniques, namely stretch forming and deep drawing. In addition, it provides information on some of the factors pertinent to cold-heading and hot forming of stainless long products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480243
EISBN: 978-1-62708-318-8
..., including brake forming, stretch forming, deep drawing, and spin forming as well as roll forming, drop-hammer forming, tube bulging and bending, and superplastic forming. It also discusses dimpling and joggling and the use of hot sizing to correct springback. forming lubricants titanium alloys...
Abstract
This chapter describes the equipment and processes used to form titanium alloy parts. It discusses the advantages and disadvantages of hot and cold forming, the factors that influence formability, and the effect of forming temperature and lubricants. It describes common processes, including brake forming, stretch forming, deep drawing, and spin forming as well as roll forming, drop-hammer forming, tube bulging and bending, and superplastic forming. It also discusses dimpling and joggling and the use of hot sizing to correct springback.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500107
EISBN: 978-1-62708-317-1
... with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses...
Abstract
This chapter discusses the forming characteristics of dual-phase (DP) and transformation-induced plasticity (TRIP) steels. It begins with a review of the mechanical behavior of advanced high-strength steels (AHSS) and how they respond to stress-strain conditions associated with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses the cause of springback and explains how to predict and compensating for its effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390389
EISBN: 978-1-62708-459-8
... Abstract This chapter covers the mechanics and tribology of sheet metalworking processes, including shearing, bending, spinning, stretching, deep drawing, ironing, and hydroforming. It explains how to determine friction, wear, and lubrication needs based on process forces, temperatures...
Abstract
This chapter covers the mechanics and tribology of sheet metalworking processes, including shearing, bending, spinning, stretching, deep drawing, ironing, and hydroforming. It explains how to determine friction, wear, and lubrication needs based on process forces, temperatures, and strains and the effects of strain hardening on workpiece materials. It presents test methods for evaluating process tribology, describes lubrication and wear control approaches, and discusses the factors, such as surface roughness, lubricant breakdown, and adhesion, that can lead to galling and other forms of wear. It also provides best practices for selecting, evaluating, and applying lubricants for specific materials, including steels, stainless steels, and aluminum and magnesium alloys.
Image
in Consequences of Using Advanced High-Strength Steels
> Advanced-High Strength Steels: Science, Technology, and Applications
Published: 01 August 2013
Fig. 12.16 Draw bead types: (a) conventional draw bead, (b) runout draw bead for high-strength steel, and (c) lock draw bead for stretch forming. Source: Ref 12.4
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230295
EISBN: 978-1-62708-298-3
... classic deep drawing are rare. Normally, the deformation is a combination of deep drawing and stretching. That is, deformation occurs in the bottom of the cup in the form of thinning, and thickening of the flange is minimized as a result of the stretching. Since beryllium usually exhibits limited triaxial...
Abstract
The vast majority of beryllium products are manufactured from blocks, forms, or billets of compacted powder that are machined or worked into shape. This chapter describes the metalworking processes used, including rolling, forming, forging, extrusion, drawing, and spinning. It covers the qualitative and quantitative aspects of each process and provides examples showing how they are implemented and the results that can be achieved. The chapter also discusses the issue of beryllium’s low formability and describes some of the advancements that have been made in near-net shape processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730139
EISBN: 978-1-62708-283-9
... stretching of the sheet. Source: Ref 13.2 Cups can be formed by deep drawing discs cut from sheets ( Fig. 13.4 ). Cups and cans are made by deep drawing. The maximum diameter reduction is limited by failure of the cup walls. This usually limits the height-to-diameter ratio to approximately 0.75...
Image
Published: 01 August 2012
Fig. 8.7 Combination of sheet hydroforming with punch (SHF-P) with stretching and deep drawing to produce complex parts in forming operation. (a) Prestretching followed by SHF-P. (b) Deep drawing followed by SHF-P. Source: Ref 8.11
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700215
EISBN: 978-1-62708-279-2
... parts are designed with minimum draw depth and reduced stretch to avoid splits. Also, gentle shape transitions are used to avoid wrinkles and large radii are specified to facilitate metal flow. The following forming guidelines are the result of lessons learned from AHSS case studies ( Ref 14.2...
Abstract
This chapter briefly reviews the experience-based guidelines that were developed for forming and welding advanced high-strength steels (AHSS). It discusses the benefits of using HSS in car body structures and components that are analyzed by the performance indices developed for materials selection.
Image
Published: 01 October 2011
Fig. 6.23 Forming limit diagrams. (a) Change in shape of circle on the surface of sheet when drawing, stretching, or plane-strain deformation occurs. (b) Forming limit curves for different sheet metals. Source: Adapted from Ref 6.7
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400033
EISBN: 978-1-62708-316-4
... and stretching or drawing to form a complex geometry. The mechanical properties (flow stress and anisotropy) describe the ability of the sheet materials to deform to produce complex parts. Formability describes the limit to which the sheet materials can undergo deformation before failure during forming...
Abstract
This chapter discusses the factors that influence the load-deformation relationship at the heart of most metal forming operations. It describes the changes that occur in tensile test samples and the various ways test data can be plotted and analyzed, particularly for design purposes. It discusses the effect of normal and planar anisotropy, the development and use of flow stress curves, and how formability is usually measured and expressed. It explains how formability measurements serve as a guide for process and tool design engineers as well as others. It also discusses the development and use of forming limit curves and the extensive amount of information they provide.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400233
EISBN: 978-1-62708-316-4
... to be formed in a draw operation. See also blank holder and draw ring. binder force See blank holder force. binder ring See blank holder. bird bath See low spot. bladesteel A long, narrow trim steel quite often mounted from the side. See also details. blank (1) In forming, a piece of sheet material, produced...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.9781627083164
EISBN: 978-1-62708-316-4
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... without a significant change in its thickness or surface characteristics. Examples of sheet forming processes include deep drawing, stretching, and bending. Sheet metal typically is formed into end products with various contoured shapes, ranging from saucepans to car bodies. In addition to the bending...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
1