Skip Nav Destination
Close Modal
By
Hari Palaniswamy, Amin Al-Nasser
By
Hari Palaniswamy, Eren Billur
By
Taylan Altan, A. Erman Tekkaya
Search Results for
stretch bending
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 196
Search Results for stretch bending
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2012
Fig. 2.25 Schematics of stretch bending tests. (a) Stretch forming test. Source: Ref 2.17 . (b) Stretch bending test. Source: Ref 2.18 . (c) Stretch bend test. Source: Ref 2.19 . (d) Tangential stretch bending
More
Image
Principle of stretch bending. One benefit of stretch forming is that it elo...
Available to PurchasePublished: 01 October 2011
Fig. 6.20 Principle of stretch bending. One benefit of stretch forming is that it elongates the metal throughout the section.
More
Image
in Plastic Deformation: Flow Stress, Anisotropy, and Formability
> Sheet Metal Forming: Fundamentals
Published: 01 August 2012
Image
in Plastic Deformation: Flow Stress, Anisotropy, and Formability
> Sheet Metal Forming: Fundamentals
Published: 01 August 2012
Fig. 4.28 Height of failure versus r -to- t ratio obtained from the stretch bend test for different steel materials ( Ref 4.28 )
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500019
EISBN: 978-1-62708-317-1
... conditions. It describes the basic principles of air bending, stretch bending, and U- and V-die bending as well as rotary, roll, and wipe die bending, also known as straight flanging. It also discusses the steps involved in contour (stretch or shrink) flanging, hole flanging, and hemming and describes...
Abstract
This chapter begins with a review of the mechanics of bending and the primary elements of a bending system. It examines stress-strain distributions defined by elementary bending theory and explains how to predict stress, strain, bending moment, and springback under various bending conditions. It describes the basic principles of air bending, stretch bending, and U- and V-die bending as well as rotary, roll, and wipe die bending, also known as straight flanging. It also discusses the steps involved in contour (stretch or shrink) flanging, hole flanging, and hemming and describes the design and operation of press brakes and other bending machines.
Book Chapter
Forming of Advanced High-Strength Steels (AHSS)
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500107
EISBN: 978-1-62708-317-1
... with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses...
Abstract
This chapter discusses the forming characteristics of dual-phase (DP) and transformation-induced plasticity (TRIP) steels. It begins with a review of the mechanical behavior of advanced high-strength steels (AHSS) and how they respond to stress-strain conditions associated with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses the cause of springback and explains how to predict and compensating for its effects.
Image
Comparison of achievable height/punch stroke of advanced high-strength stee...
Available to Purchase
in Forming of Advanced High-Strength Steels (AHSS)
> Sheet Metal Forming: Processes and Applications
Published: 01 August 2012
Fig. 6.16 Comparison of achievable height/punch stroke of advanced high-strength steels with mild steels in the angular stretch bend test. Source: Ref 6.13
More
Image
Comparison of finite-element model (FEM)-predicted punch displacement at fr...
Available to Purchase
in Forming of Advanced High-Strength Steels (AHSS)
> Sheet Metal Forming: Processes and Applications
Published: 01 August 2012
Fig. 6.17 Comparison of finite-element model (FEM)-predicted punch displacement at fracture with experimental results in stretch bending DP 600 with different punch radii. Source: Ref 6.22
More
Book Chapter
Plastic Deformation: Flow Stress, Anisotropy, and Formability
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400033
EISBN: 978-1-62708-316-4
... in Chapter 6 in this volume. Fig. 4.20 Comparison of flow stress obtained from tensile test and bulge test for sheet materials DP600 and A5754-O 4.4 Formability In sheet metal forming, the initial blank is a flat sheet and undergoes bending, stretching, or a combination of bending...
Abstract
This chapter discusses the factors that influence the load-deformation relationship at the heart of most metal forming operations. It describes the changes that occur in tensile test samples and the various ways test data can be plotted and analyzed, particularly for design purposes. It discusses the effect of normal and planar anisotropy, the development and use of flow stress curves, and how formability is usually measured and expressed. It explains how formability measurements serve as a guide for process and tool design engineers as well as others. It also discusses the development and use of forming limit curves and the extensive amount of information they provide.
Book Chapter
Fabrication and Finishing of Metal Products
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... without a significant change in its thickness or surface characteristics. Examples of sheet forming processes include deep drawing, stretching, and bending. Sheet metal typically is formed into end products with various contoured shapes, ranging from saucepans to car bodies. In addition to the bending...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Forming
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740163
EISBN: 978-1-62708-308-9
... Abstract This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die...
Abstract
This chapter describes sheet metal forming operations, including cutting, blanking, piercing, and bending as well as deep drawing, spinning, press-brake and stretch forming, fluid forming, and drop hammer and electromagnetic forming. It also discusses the selection and use of die materials and lubricants along with superplastic forming techniques.
Book Chapter
Sheet Metalworking
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390389
EISBN: 978-1-62708-459-8
... Abstract This chapter covers the mechanics and tribology of sheet metalworking processes, including shearing, bending, spinning, stretching, deep drawing, ironing, and hydroforming. It explains how to determine friction, wear, and lubrication needs based on process forces, temperatures...
Abstract
This chapter covers the mechanics and tribology of sheet metalworking processes, including shearing, bending, spinning, stretching, deep drawing, ironing, and hydroforming. It explains how to determine friction, wear, and lubrication needs based on process forces, temperatures, and strains and the effects of strain hardening on workpiece materials. It presents test methods for evaluating process tribology, describes lubrication and wear control approaches, and discusses the factors, such as surface roughness, lubricant breakdown, and adhesion, that can lead to galling and other forms of wear. It also provides best practices for selecting, evaluating, and applying lubricants for specific materials, including steels, stainless steels, and aluminum and magnesium alloys.
Book Chapter
Forming of Titanium Plate, Sheet, Strip, and Tubing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480243
EISBN: 978-1-62708-318-8
..., including brake forming, stretch forming, deep drawing, and spin forming as well as roll forming, drop-hammer forming, tube bulging and bending, and superplastic forming. It also discusses dimpling and joggling and the use of hot sizing to correct springback. forming lubricants titanium alloys...
Abstract
This chapter describes the equipment and processes used to form titanium alloy parts. It discusses the advantages and disadvantages of hot and cold forming, the factors that influence formability, and the effect of forming temperature and lubricants. It describes common processes, including brake forming, stretch forming, deep drawing, and spin forming as well as roll forming, drop-hammer forming, tube bulging and bending, and superplastic forming. It also discusses dimpling and joggling and the use of hot sizing to correct springback.
Book Chapter
Deformation Processing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240279
EISBN: 978-1-62708-251-8
... metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming. hot working cold working bulk deformation rolling forging extrusion sheet metal forming blanking piercing bending stretch forming drawing rubber pad forming...
Abstract
This chapter describes the general characteristics of two commonly classified metalworking processes, namely hot working and cold working. Primary metalworking processes, such as the bulk deformation processes used to conduct the initial breakdown of cast ingots, are always conducted hot. Secondary processes, which are used to produce the final product shape, are conducted either hot or cold. The chapter discusses the primary objectives, principal types, advantages, and disadvantages of both primary and secondary metalworking processes. They are rolling, forging, extrusion, sheet metal forming processes, blanking and piercing, bending, stretch forming, drawing, rubber pad forming, and superplastic forming.
Book Chapter
Classification and Description of Sheet Metal Forming Operations
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400005
EISBN: 978-1-62708-316-4
... Abstract This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram...
Abstract
This chapter provides a concise, design-oriented summary of more than 30 sheet forming processes within the categories of bending and flanging, stretch forming, deep drawing, blank preparation, and incremental and hybrid forming. Each summary includes a description and diagram of the process and a bullet-point list identifying relevant equipment, materials, variations, and applications. The chapter also discusses critical process variables, interactions, and components and the classification of sheet metal parts based on geometry.
Image
Typical stretch-formed shapes. (a) Longitudinal stretching. (b) Transverse ...
Available to PurchasePublished: 01 October 2012
Fig. 2.18 Typical stretch-formed shapes. (a) Longitudinal stretching. (b) Transverse stretching. (c) Compound bend from extrusion. (d) Long, sweeping bend from extrusion. Source: Ref 2.17
More
Book Chapter
Tensile Testing for Determining Sheet Formability
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060101
EISBN: 978-1-62708-355-3
... bending with the yield stress exceeded in the outer layers of the beam, and combined stretching and bending. In an actual part, springback is determined by the complex interaction of the residual internal elastic stresses, subject to the constraints of the part geometry. Elastic Bending below the Yield...
Abstract
Sheet metal forming operations consist of a large family of processes, ranging from simple bending to stamping and deep drawing of complex shapes. Because sheet forming operations are so diverse in type, extent, and rate, no single test provides an accurate indication of the formability of a material in all situations. However, as discussed in this chapter, the uniaxial tensile test is one of the most widely used tests for determining sheet metal formability. This chapter describes the effect of material properties and temperature on sheet metal formability. Information on the types of formability tests is also provided. The chapter discusses the processes involved in uniaxial and plane-strain tensile testing. Examples include the uniaxial tensile test and the plane-strain tensile test which are subsequently described.
Image
Springback of a beam in simple bending. (a) Elastic bending. (b) Elastic an...
Available to PurchasePublished: 01 December 2004
Fig. 5 Springback of a beam in simple bending. (a) Elastic bending. (b) Elastic and plastic bending. (c) Bending and stretching
More
Book Chapter
Consequences of Using Advanced High-Strength Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700177
EISBN: 978-1-62708-279-2
... they contain stretching and drawing components. The drawing component is responsible for springback. During bending the outer surface of the bent sheet will be in tension and the inner surface will be in compression. As bending progresses, the neutral axis shifts from the center of the cross section...
Abstract
This chapter describes the nature of the problems arising from using advanced high-strength steels (AHSS) and discusses potential remedies to minimize the adverse effects that may limit the adoption of AHSS in the automotive industry. The discussion provides information on press energy, springback, residual stress, die wear, hot forming, downgaging limits, welding, binders, draw beads, and tool material wear.
Book Chapter
Consequences of Using Advanced High-Strength Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 October 2024
DOI: 10.31399/asm.tb.ahsssta2.t59410195
EISBN: 978-1-62708-482-6
... they contain stretching and drawing components. The drawing component is responsible for springback. During bending, the outer surface of the bent sheet will be in tension and the inner surface will be in compression. As bending progresses, the neutral axis shifts from the center of the cross section...
Abstract
This chapter describes the nature of the problems arising from using advanced high-strength steels, including limited formability, reduced weldability, increased springback, elevated press tonnage, and accelerated die wear, and discusses potential remedies to minimize the adverse effects that may limit the adoption of AHSS in the automotive industry.
1