Skip Nav Destination
Close Modal
Search Results for
stress-strain relation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 631 Search Results for
stress-strain relation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 March 2006
Fig. A.56 Comparison of the cyclic stress-strain curve and inverted relation for 7075-T6 aluminum
More
Image
in Special Materials: Polymers, Bone, Ceramics, and Composites
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 12.45 Typical stress-strain and life relations for a cyclically stable metal. (a) Cyclic stress-strain relation based on ranges. RA, reduction in area. (b) Completely reversed strain-life relation based on the method of universal slopes. Source: Ref 12.5
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870105
EISBN: 978-1-62708-344-7
... has a significant effect on which theory best describes its fatigue behavior. crystal structure fatigue life multiaxial fatigue stress-strain relations Introduction Few subjects in fatigue analysis have attracted as much attention in recent years as the effect of multiaxiality...
Abstract
This chapter reviews the theories that have emerged from the widespread study of multiaxial fatigue and assesses their validity using data from different sources. It begins by providing background on the studies that the chapter draws on, pointing out differences in methodology and explaining how they influence test results and data. It then discusses the concept of critical planes and how they are used to correlate the effects of uniaxial loading with multiaxial fatigue behaviors. The section that follows covers the various methods used to analyze multiaxial fatigue and identifies one that best treats the general case. The chapter also defines two important factors, the triaxiality factor and the multiaxiality factor, and presents the results of an extensive study to determine how the two factors are related. One of the more interesting findings is that the atomic structure of a material has a significant effect on which theory best describes its fatigue behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060033
EISBN: 978-1-62708-355-3
... behavior and the differences between related terms, such as stress and force and strain and elongation. It considers the parts of a tensile test, namely, test-piece preparation, geometry, and material condition; test setup and equipment; and test procedures. The chapter provides information on post-test...
Abstract
This chapter discusses the methodology of the tensile test and the effect of some of the variables on the tensile properties. The methodology and variables discussed are shape of the item being tested, method of gripping the item, method of applying the force, determination of strength properties other than the maximum force required to fracture the test item, ductility properties to be determined, speed of force application or speed of elongation, and test temperature. The chapter presents the definitions of the basic terms and their units, along with discussions of basic stress-strain behavior and the differences between related terms, such as stress and force and strain and elongation. It considers the parts of a tensile test, namely, test-piece preparation, geometry, and material condition; test setup and equipment; and test procedures. The chapter provides information on post-test measurements and describes the effect of strain concentrations and strain rate on tensile properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060001
EISBN: 978-1-62708-355-3
... the behavior of a material under forms of loading other than uniaxial tension. This chapter provides a brief overview of tensile specimens and test machines, stress-strain curves, true stress and strain, and test methodology and data analysis. elastic properties stress-strain curves tensile properties...
Abstract
Tensile tests are performed for several reasons related to materials development, comparison, selection, and quality control. The properties derived from tensile tests are used in selecting materials for engineering applications. Tensile properties often are used to predict or estimate the behavior of a material under forms of loading other than uniaxial tension. This chapter provides a brief overview of tensile specimens and test machines, stress-strain curves, true stress and strain, and test methodology and data analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060001
EISBN: 978-1-62708-343-0
... Abstract This chapter familiarizes readers with the mechanisms involved in creep and how they are related to fatigue behavior. It explains that what we observe as creep deformation is the gradual displacement of atoms in the direction of an applied stress aided by diffusion, dislocation...
Abstract
This chapter familiarizes readers with the mechanisms involved in creep and how they are related to fatigue behavior. It explains that what we observe as creep deformation is the gradual displacement of atoms in the direction of an applied stress aided by diffusion, dislocation movement, and grain boundary sliding. It describes these mechanisms in qualitative terms, explaining how they are driven by thermal energy and how they can be analyzed using creep curves and deformation maps. In addition, it examines the types of damage associated with creep, presents a number of creep strain and strain rate equations, explains how to determine creep constants, and reviews the findings of several studies on cyclic loading. It also discusses the development of a novel test that measures the cyclic creep-rupture resistance of materials in tension and compression.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390007
EISBN: 978-1-62708-459-8
... For Hookian materials (materials where elastic behavior follows Hooke’s Law), the strain can be calculated directly from the applied stress and the material’s elastic modulus. In plastic flow, it is the strain increment that is related to stress, using the form: (2.11) d ϵ i j = d λ...
Abstract
This chapter presents a qualitative and quantitative overview of the stresses, strains, forces, and energy associated with metalworking processes and the tribological behavior of metals. It covers key concepts necessary for understanding metalworking tribology, including plastic deformation, yield criteria, flow strength, and the application of flow rules. It explains how to calculate the work involved in deformation processes, how to assess the propensity for fracture, how to determine temperature rise and strain distribution in the workpiece, and how to classify metalworking processes based on related tribology.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040025
EISBN: 978-1-62708-300-3
.... aluminum alloys compression test copper alloys flow stress forgeability steels stress-strain relation tensile test titanium alloys torsion test 4.1 Introduction In order to understand the forces and stresses involved in metal forming processes it is necessary to (a) become familiar...
Abstract
This chapter explains how to determine flow stress and forgeability using data from tensile tests, compression tests, ring tests, and torsion tests. It describes sample preparation, tooling and equipment, test procedures, error sources, and data plotting techniques. It also provides a significant amount of experimentally derived flow stress data, including K and n values for steel, copper, and aluminum alloys, C and m values (at various temperatures) for steel, aluminum, copper, titanium, and other alloys, and average flow stress for several alloys determined by compression testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870179
EISBN: 978-1-62708-344-7
...-strain relation for metals. Fig. 8.1 Stress concentration caused by abrupt change in cross-sectional area Fig. 8.2 Shaft with fillet. (a) Bending. (b) Axial load. (c) Torsion. Source: Ref 8.6 The value of a stress concentration factor is dictated primarily by the geometric...
Abstract
This chapter describes how notches affect the load-carrying capacity and fatigue life of materials under cyclic loads. It explains that stresses and strains can be three to four times higher in the vicinity of a notch, greatly accelerating fatigue damage. It discusses the use of stress concentration factors and how they are determined for the general case and for specific geometries, materials, and surface conditions. The chapter covers both elastic and plastic fatigue behaviors as well as a wide range of methods. It also explains how small nuances in loading can introduce tensile or compressive stress in the hysteresis loops causing variations in fatigue life as large as 50:1 depending on where the transition in fatigue behavior occurs.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090257
EISBN: 978-1-62708-266-2
... Abstract Stress-corrosion cracking (SCC) in magnesium alloys was first reported in the 1930s and, within ten years, became the focus of intense study. This chapter provides a summary of all known work published since then on the nature of SCC in magnesium alloys and how it is related...
Abstract
Stress-corrosion cracking (SCC) in magnesium alloys was first reported in the 1930s and, within ten years, became the focus of intense study. This chapter provides a summary of all known work published since then on the nature of SCC in magnesium alloys and how it is related to composition, microstructure, and heat treatment. It describes the types of environments where magnesium alloys are most susceptible to SCC and the effect of contributing factors such as temperature, strain rate, and applied and residual stresses. The chapter also discusses crack morphology and what it reveals, provides information on proposed cracking mechanisms, and presents a practical approach for preventing SCC.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
..., and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
... between points B and D . In force-controlled tests of smooth axial specimens, wherein force and stress are linearly related, the externally applied mean force creates and enforces the internal mean stress. Of course, cycle-dependent strain ratcheting may occur under force control when cyclic plasticity...
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
... presents the stress-strain relations for a unidirectional lamina and the constitutive equations for the laminate. 8.3.1 Lamina Stress-Strain Relations On-Axis Stress-Strain Relations Consider the coordinate system of the lamina shown in Fig. 8.5 . The lamina is subjected to generalized in-plane...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540001
EISBN: 978-1-62708-309-6
... this book. In Chapter 2 , a more detailed account is given on the stress-strain curve, the information obtained from a tensile stress-strain curve, and what that information means in design analysis and failure prevention. Before presenting the stress-strain relations or getting into the characteristic...
Abstract
This chapter reviews the fundamentals of stress, strain, and deformation and demonstrates some of the tools and techniques used to analyze how materials and structures respond to tension, compression, bending, and shear. It begins with an overview of the behavior of perfectly elastic and plastic materials and viscous substances. It then describes the stress-strain response of two- and three-dimensional solids, explaining how to determine principle stresses and strains using Mohr’s circle and how to derive equivalent stress and strain using the von Mises relationship. It then goes on to analyze the stress state of load-bearing members, pressurized tubes, and pin-loaded lugs, accounting for the effect of geometric discontinuities, such as cutouts, fillets, and holes, as well as cracks. It also explains how finite element methods are used to solve problems involving complex geometric and loading conditions.
Image
Published: 01 March 2006
Fig. 7.10 Determination of stress distribution in a rotating beam from axial strain-cycling fatigue data. (a) Total strain range-life relation for material. (b) Strain distribution in cross section of rotating beam. (c) Cyclic stress range-strain range relation for material. (d) Hysteresis
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
... modulus of fiber ( E f ) and matrix ( E m ), and fiber volume fraction ( k f ), through compatibility, the stress-strain relations, the rule of mixtures, and equilibrium of internal forces. Assuming elastic behavior of both fiber and matrix, the cyclic matrix thermal expansion mismatch strain (Δε m...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870157
EISBN: 978-1-62708-344-7
... equations, it has been found to be better to select a surface strain and calculate the bending moment required to produce this strain. From the selected surface strain we establish the fatigue life, and from the required bending moment, the nominal elastic stress. Thus, we can establish the relation between...
Abstract
This chapter deals with the effects of fatigue in rotating shafts subjected to elastic and plastic strains associated with bending stresses. It begins with a review of the basic approach to treating low-cycle fatigue in bending, explaining that the assumption that stress is proportional to strain is incorrect due to plastic flow, causing considerable discrepancy between measured and calculated stresses. Data plots of the axial and bending fatigue characteristics of a 4130 steel help illustrate the problem. A closed-form solution is then presented and used to analyze the effects of flexural bending on solid as well as hollow rectangular and round bars. The chapter also discusses the difference in the treatment of a rotating shaft in which all surface elements undergo the same stress and strain and a nonrotating shaft in which a few surface elements carry most of the load. The difference, as explained, is due to the volumetric effect of stress in fatigue.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870045
EISBN: 978-1-62708-344-7
... known that a power-law relation exists between stress and plastic strain, it should easily have been concluded that a power-law relation must also exist between elastic strain range and cyclic life. Thus, an expression relating total strain range to the sum of the two power-laws of cyclic life could...
Abstract
This chapter familiarizes readers with the methods used to quantify the effects of fatigue on component lifetime and failure. It discusses the development and use of S-N (stress amplitude vs. cycles to failure) curves, the emergence of strain-based approaches to fatigue analysis, and important refinements and modifications. It demonstrates the use of approximate equations, including the method of universal slopes and the four-point correlation technique, which provides reasonable estimates of elastic and plastic lines from information obtained in standard tensile tests. It also discusses high-cycle, low-cycle, and ultra-high cycle fatigue and presents several models that are useful for fatigue life predictions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870375
EISBN: 978-1-62708-344-7
... here rather than where applied because of the several uses that are made of the results. Although initially developed for inverting the strain-life equation ( Chapter 3, “Fatigue Life Relations” ), its applications were later extended to the stress-strain equation ( Chapter 2, “Stress and Strain...
Abstract
This appendix provides supplemental information on the metallurgical aspects of atomic structure, the use of dislocation theory, heat treatment processes and procedures, important engineering materials and strengthening mechanisms, and the nature of elastic, plastic, and creep strain components. It also provides information on mechanical property and fatigue testing, the use of hysteresis energy to analyze fatigue, a procedure for inverting equations to solve for dependent variables, and a method for dealing with the statistical nature of failure.
1