Skip Nav Destination
Close Modal
Search Results for
stress-relaxation testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 193 Search Results for
stress-relaxation testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 August 2005
Fig. 3.42 Schematic hysteresis loops encountered in isothermal creep-fatigue testing. (a) Pure fatigue, no creep. (b) Tensile stress hold, strain limited. (c) Tensile strain hold, stress relaxation. (d) Slow tensile straining rate. (e) Compressive stress hold, strain limited. (f) Compressive
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
...Six tests to determine constants <italic>Q</italic> and <italic>P</italic> in the comprehensive model Table 4.1 Six tests to determine constants Q and P in the comprehensive model Test No. Mean stress, MPa (ksi) Alternating stress, MPa (ksi) Target life cycles Actual life cycles...
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080379
EISBN: 978-1-62708-304-1
.... This is often referred to as “stress-relaxation cracking,” “reheat cracking,” or “strain-age cracking” in the literature. Typically, a highly constrained component, such as a heavy wall construction, or a welded component, or a cold-worked structure, can be susceptible to this type of intergranular, brittle...
Abstract
This chapter discusses two damage mechanisms in which stress plays a major role. In the one case, stress causes cracks in the oxide scale on metals, leading to preferential corrosion attack. An example from industry of this type of failure is the circumferential cracking that occurs on the waterwall tubes of supercritical coal-fired boilers fired under low NOx combustion conditions, conducive to the production of sulfidizing environments. In the other case, stress contributes to brittle fracture in the form of intergranular cracking. The phenomenon, which is known by various names, typically occurs at the lower end of the intermediate temperature range and has been observed in ferritic steels, stainless steels, Fe-Ni-Cr alloys, and nickel-base alloys, as described in the chapter.
Image
Published: 01 December 2004
Fig. 4 The elastic aftereffect. The tensile specimen was loaded to a stress of σ 0 and then held. The time-dependent drop in stress results from a decrease in the load required to maintain a fixed displacement. This decrease results from anelastic strains that increase the length of the test
More
Image
in Total Strain-Based Strain-Range Partitioning—Isothermal and Thermomechanical Fatigue
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 6.2 Input information for analysis of hold-time test. (a) Strain-time history. (b) Strain-range life curves. (c) Cyclic stress-strain curve. (d) Relationship between steady-state creep rate and stress. (e) Hysteresis loop with various tensile hold times. (f) Stress relaxation curve during
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780295
EISBN: 978-1-62708-281-5
... the severity of the problem. Methods developed for determining thermal stresses in metals have been adapted for use with polymers. One researcher proposed a method of estimating the average internal stress in a cross section of metal by stress relaxation ( Ref 16 ). In stress relaxation tests, strain...
Abstract
In an attempt to explain the stresses encountered in the plastics industry, this article first defines the different types of internal stresses in amorphous polymers. Each type of thermal stress is then discussed in detail, with reference to the mechanism of generation and the effect on engineering properties. Methods of detecting and measuring internal stresses are also presented. The article then describes the combined effects of thermal stresses and orientation that result from processing conditions. Finally, it discusses numerous aspects of physical aging and the use of high-modulus graphite fibers in amorphous polymers.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
... temperature to produce creep strains via stress relaxation ( Fig. 6.37 ). It is important to note that the inelastic strain-range fractions, F PC and F PP , can be determined by direct observation from the stress-hold loops shown in Fig. 6.41(d) (or from peak strain-hold tests). However...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780199
EISBN: 978-1-62708-281-5
... Abstract This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect...
Abstract
This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect that polymers often undergo at room temperature are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060223
EISBN: 978-1-62708-343-0
... induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation. References References 9.1 Richards C.W. , Engineering Materials Science , Wadsworth Publishing , San Francisco , 1961 , p 27 , 468 9.2 Halford...
Abstract
Fiber-reinforced metal-matrix composites have carved out a niche in applications requiring high strength to weight ratios, but they are susceptible to failure when exposed to high temperatures and cyclic loads. This chapter discusses the obstacles that must be overcome to improve the creep-fatigue behavior of these otherwise promising materials. It addresses six areas that have been the focus of intense research, including thermal-expansion and elastic-viscoplastic mismatch, thermally induced biaxiality and interply stresses, creep and cyclic relaxation of residual stresses, and enhanced interfaces for oxidation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490265
EISBN: 978-1-62708-340-9
.... CEGB = Central Electricity Generating Board. (b) Stress relaxation for 0.15% strain, (c) Values at 10 4 h, 500 °C. (d) Values at 10 4 h, 550 °C. (e) Superseded by Durehete 1055. Fig. 6.48. Comparison of stress-relaxation behavior after 30,000 h as a function of temperature...
Abstract
This chapter covers the failure modes and mechanisms of concern in steam turbines and the methods used to assess remaining component life. It provides a detailed overview of the design considerations, material requirements, damage mechanisms, and remaining-life-assessment methods for the most-failure prone components beginning with rotors and continuing on to casings, blades, nozzles, and high-temperature bolts. The chapter makes extensive use of images, diagrams, data plots, and tables and includes step-by-step instructions where relevant.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780314
EISBN: 978-1-62708-281-5
... Abstract This article describes the mechanisms of moisture-induced damage in polymeric materials, covering the characteristics of important structural plastics; the effects of moisture on glass transition temperature, modulus, creep, and stress relaxation of plastic materials; and moisture...
Abstract
This article describes the mechanisms of moisture-induced damage in polymeric materials, covering the characteristics of important structural plastics; the effects of moisture on glass transition temperature, modulus, creep, and stress relaxation of plastic materials; and moisture-induced fatigue failure in composites. The effect of moisture on the mechanical properties of thermoset resins and thermoplastics are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060115
EISBN: 978-1-62708-355-3
... from a decrease in the load required to maintain a fixed displacement. This decrease results from anelastic strains that increase the length of the test specimen. When the anelastic straining process is complete, the stress has relaxed by a value of σ max . Fig. 5 Loading-rate effects...
Abstract
The tensile test provides a relatively easy, inexpensive technique for developing mechanical property data for the selection, qualification, and utilization of metals and alloys in engineering service. The tensile test requires interpretation, and interpretation requires a knowledge of the factors that influence the test results. This chapter provides a metallurgical perspective for such interpretation. The topics covered include elastic behavior, anelasticity, damping, proportional limit, yield point, ultimate strength, toughness, ductility, strain hardening, and yielding and the onset of plasticity. The chapter describes the effects of grain size on yielding, effect of cold work on hardness and strength, and effects of temperature and strain-rate on the properties of metals and alloys. It provides information on true stress-strain relationships and special tests developed to measure the effects of test/specimen conditions. Finally, the chapter covers the characterization of tensile fractures of ductile metals and alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780055
EISBN: 978-1-62708-281-5
... for predicting plastic part performance (stiffness, strength/impact, creep/stress relaxation, and fatigue) integrated with manufacturing concerns (flow length and cycle time) are demonstrated for design and material selection. plastics material selection materials design plastic parts stiffness impact...
Abstract
The key to any successful part development is the proper choice of material, process, and design matched to the part performance requirements. This article presents examples of reliable material performance indicators and common practices to avoid. Simple tools and techniques for predicting plastic part performance (stiffness, strength/impact, creep/stress relaxation, and fatigue) integrated with manufacturing concerns (flow length and cycle time) are demonstrated for design and material selection.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270154
EISBN: 978-1-62708-301-0
..., the outer skin was subjected to severe overload. The final overload fracture of one outer skin took place by the reverse slant mode, indicative of high strain rate fracture. Although full slant fracture may develop in thin sheets because through thickness stresses are relaxed by plastic deformation...
Abstract
The aluminum alloy skin on the main rotor blade of a helicopter tore off in flight, and an investigation was subsequently conducted to find the cause. Visual examination and SEM fractography revealed that a fatigue crack originated on the underside of a rivet hole at the trailing edge of the blade. The crack then propagated through the outer skin toward the leading edge of the blade. Once the fatigue crack reached critical length, the sheet metal fractured catastrophically, tearing away from the blade.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780204
EISBN: 978-1-62708-281-5
... cracking. As previously discussed, this type of fixture allows stress relaxation in the material as a function of time. Fracture Toughness Testing For the brittle fracture mode, two other physical properties that are useful in the selection of materials are the impact strength and plane-strain...
Abstract
This article discusses various factors influencing general polymeric behavior, ductile-brittle transitions, crazing, and the brittle fracture of polymeric materials. The discussion covers the effects of environment on glassy thermoplastic, several parametric descriptions of craze initiation, the kinetics of craze growth, and the effect of crazing on toughness of the plastic. In addition, the article provides information on various tests to determine stress-to-craze value, strain-to-craze value, and fracture toughness of the plastic.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060137
EISBN: 978-1-62708-355-3
... as varied as creep, stress relaxation, stress rupture, fatigue, and impact resistance can all be classified as tensile tests provided that the stress system is predominantly tensile, but by common usage the term “tensile test” is usually taken to mean a test in which a specimen is extended uniaxially...
Abstract
The testing of plastics includes a wide variety of chemical, thermal, and mechanical tests. This chapter reviews the tensile testing of plastics, which has been standardized in ASTM D 638, "Standard Test Method for Tensile Properties of Plastics," and other comparable standards. It describes the fundamental factors that affect data from tensile tests, examines the stipulations in standardized tensile testing, and discusses the utilization of data from tensile tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930163
EISBN: 978-1-62708-359-1
... as to base metals, special problems in testing welds posed major stumbling blocks to those trying to measure fracture toughness in weldments. These problems, as discussed below, include: Strength mismatch Residual stress Test specimen preparation However, a new ASTM test standard...
Abstract
Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes, including brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. These failure modes can be broken down into the categories of fracture, fatigue, environmental cracking, and high-temperature creep. This article discusses each of these categories, as well as the benefits of a fitness-for-service approach.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090367
EISBN: 978-1-62708-266-2
... another, their individual stress concentrations interact and are relaxed. Consequently, there may not be a sufficient stress concentration in the true constant-strain test (infinitely stiff fixture) to propagate further SCC, and the specimen will not break ( Fig. 17.5b ). Under a constant load, however...
Abstract
This chapter addresses the challenge of selecting an appropriate stress-corrosion cracking (SCC) test to evaluate the serviceability of a material for a given application. It begins by establishing a generic model in which SCC is depicted in two stages, initiation and propagation, that further subdivide into several zones plus a transition region. It then discusses SCC test standards before describing basic test objectives and selection criteria. The chapter explains how to achieve the required loading conditions for different tests and how to prepare test specimens to determine elastic strain, plastic strain, and residual stress responses. It also describes the difference between smooth and precracked specimens and how they are used, provides information on slow-strain-rate testing and how to assess the results, and discusses various test environments and procedures, including tests for weldments. The chapter concludes with a section on how to interpret time to failure, threshold stress, percent survival, stress intensity, and propagation rate data, and assess the precision of the associated tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780305
EISBN: 978-1-62708-281-5
... and 45 . Two investigators used constant-strain tests, coupled with strain gages and force transducers, to determine stress relaxation in the specimens as the tests proceeded ( Ref 46 , 47 ). For nontransparent specimens, stress relaxation must be the measure of craze initiation, because the crazes...
Abstract
This article discusses the molecular mechanism, environmental criteria, and material optimization of environmental stress crazing (ESC) in glassy thermoplastics, polyethylenes, and nylons. In addition, it provides information on various tests used to determine relative susceptibility to ESC, namely constant tensile load testing and constant-strain testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780105
EISBN: 978-1-62708-281-5
.... As a result of time and temperature, the macromolecular network will eventually undergo stress relaxation. The attendant distortion, warpage, and dimensional instabilities are directly related to the degree of “cruelty” suffered in processing. The consequences of processing at all stages must be addressed...
Abstract
This article addresses some established protocols in characterizing thermoplastics, whether they are homogeneous resins, alloyed or blended compositions, or highly modified thermoplastic composites. It begins with a description of various approaches used for the determination of molecular weight (MW) by viscosity measurements. This is followed by a discussion of the use of cone and plate and parallel plate geometries in determining the viscoelastic properties of a polymer melt. Details on some of the chromatographic techniques that allow determination of MW and MW distribution of polymers are then provided. The article concludes with information on three distinctive, but complementary operations of thermoanalytical techniques, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.