Skip Nav Destination
Close Modal
Search Results for
strain patterns
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 360 Search Results for
strain patterns
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850536
EISBN: 978-1-62708-260-0
... Abstract This appendix lists etch compositions and procedures that reveal strain patterns in aluminum and nickel-base superalloys. aluminum alloys macroetchants nickel-base superalloys strain patterns Metallography Principles and Practice George F. Vander Voort, p 536-537 DOI...
Image
Published: 01 December 1984
Figure 1-26 a Strain pattern revealed in a broken flat tensile bar of carbon steel using Bish’s procedure (see Refs. 11 and 12).
More
Image
Published: 01 December 1984
Figure 1-26 b Strain pattern in a cold-formed ASTM A325 high-strength bolt (before heat treatment) revealed by Bish’s method (see Refs. 11 and 12). Note the thin strained surface layer beneath the cold-rolled threads.
More
Image
Published: 01 March 2006
Fig. 2.7 Analysis of complex straining pattern using templates of the single- and double-amplitude stress-strain curves of a stable material. (a) Strain history. (b) Constructed stress-strain paths
More
Image
Published: 01 March 2006
Fig. 2.25 Computer model behavior under complex straining pattern for gray cast iron. (a) Strain control. (b) Stress control. Source: Ref 2.9
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870009
EISBN: 978-1-62708-344-7
... Fig. 2.1 Typical monotonic tensile stress-strain curve Fig. 2.2 Cyclic stress-strain behavior for a cyclically stable material whose monotonic curve is as shown in Fig. 2.1 Fig. 2.4 Typical pattern of response of materials during strain cycling (schematic). (a) Cyclically...
Abstract
This chapter provides a detailed analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften with continued strain reversals. It compares and contrasts the response patterns of such materials, explaining how the movement of dispersed particles and dislocations influences their behavior. It then examines the behavior of materials under uniaxial strain reversals of varying amplitude and explains how to construct double-amplitude stress-strain curves that account for complex straining histories. For special cases, those involving complex materials such as gray cast iron or highly complex straining patterns, the chapter presents other methods of analysis, including the rainflow cycle counting method, mechanical modeling based on displacement-limited elements, Wetzel’s method, and deformation modeling. It also explains the difference between force cycling and stress cycling and presents alternate techniques for predicting whether a material will become harder or softer in response to strain cycling.
Image
in Special Materials: Polymers, Bone, Ceramics, and Composites
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 12.5 Softening patterns for various polymers tested under strain control at room temperature. (a) Polycarbonate ( Ref 12.2 ). (b) Nylon ( Ref 12.2 ). (c) Polypropylene ( Ref 12.3 ). (d) ABS plastic ( Ref 12.3 )
More
Image
Published: 01 March 2006
Fig. 4.3 Schematic patterns of strain ratcheting under force control for (a) cycling hardening and (b) cyclic softening, and patterns of cyclic stress relaxation under strain control for (c) cyclic hardening and (d) cyclic softening
More
Image
in Critique of Predictive Methods for Treatment of Time-Dependent Metal Fatigue at High Temperatures
> Fatigue and Durability of Metals at High Temperatures
Published: 01 July 2009
Fig. 8.11 Strain-reversal pattern illustrating difficulty encountered with using absolute strain in summing damage accumulation
More
Image
Published: 01 March 2006
Fig. 2.4 Typical pattern of response of materials during strain cycling (schematic). (a) Cyclically hardening material. (b) Cyclically softening material
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060043
EISBN: 978-1-62708-343-0
... strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction...
Abstract
Strain-range partitioning is a method for assessing the effects of creep fatigue based on inelastic strain paths or strain reversals. The first part of the chapter defines four distinct strain paths that can be used to model any cyclic loading pattern and describes the microstructural damages associated with each of the four basic loading cycles. The discussion then turns to fatigue life prediction for different types of materials and more realistic loading conditions, particularly those in which hysteresis loops have more than one strain-range component. To that end, the chapter considers two cases. In one, the relationship between strain range and cyclic life is established from test data. In the other, a rule is required to determine the damage of each concurrent strain and the total damage of the cycle is used to predict creep-fatigue life. The chapter presents several such damage rules and discusses their applicability in different situations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870075
EISBN: 978-1-62708-344-7
... Fig. 4.3 Schematic patterns of strain ratcheting under force control for (a) cycling hardening and (b) cyclic softening, and patterns of cyclic stress relaxation under strain control for (c) cyclic hardening and (d) cyclic softening Fig. 4.4 Development of hysteresis loops for man-ten...
Abstract
This chapter discusses the concept of mean stress and explains how it is used in fatigue analysis and design. It begins by examining the stress-strain response of test samples subjected to cyclic forces and strains, noting important features and what they reveal about materials and their fatigue behaviors. It then discusses the challenge of developing hysteresis loops for complex loading patterns and accounting for effects such as ratcheting and stress relaxation. The sections that follow provide a summary of the various ways mean stress is described in the literature and the methods used to calculate or predict its effect on the fatigue life of machine components. The discussion also sheds light on why tensile mean stress is detrimental to both fatigue life and ductility, while compressive mean stress is highly beneficial.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850001
EISBN: 978-1-62708-260-0
... been to reveal the primary structure of materials, that is the gross structure resulting from solidification rather than the secondary or tertiary microstructure. More recently developed copper-containing macroetchants have been used to study strain patterns in stressed metals. Stead’s no. 1...
Abstract
This chapter describes several macroscopic examination techniques, including macroetching, contact printing, fracturing, and lead exudation. It explains how each method is implemented, why it is used, and what it reveals about manufacturing processes, defects, imperfections, and failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260001
EISBN: 978-1-62708-336-2
... diameter of the extruded rod, and ER is the extrusion ratio. In determining the strain rate, the complex flow pattern in the deformation zone creates a problem. The material undergoes a rapid acceleration as its passes through the deformation zone, and therefore, a mean strain rate has to be estimated...
Abstract
This chapter discusses the basic differences between direct and indirect extrusion, the application of plastic theory, the significance of strain and strain rate, friction, and pressure, and factors such as alloy flow stress and extrusion ratio, which influence the quality of material exiting the die and the amount of force required.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870265
EISBN: 978-1-62708-299-0
... hardening to qualify as H x 1 temper. H112 pertains to products that can acquire some strain hardening during working at elevated temperature and for which there are mechanical property limits. H temper designations assigned to patterned or embossed sheet are listed in Table 2 . H temper...
Image
Published: 01 June 2016
Fig. 5.6 X-ray diffraction patterns comparing (a) warm-sprayed and (b) cold-sprayed titanium coating, along with the respective starting powders, indicate the presence of TiO oxides along with the metal in the warm-sprayed coating. Williamson-Hall plots for the (c) warm-sprayed and (d) cold
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610025
EISBN: 978-1-62708-303-4
... Abstract This chapter discusses the stress-strain response of materials, how it is measured, and how it used to set performance expectations. It begins by describing the common tensile test and how it sheds light on the elastic design of structures as well as plasticity and fracture behaviors...
Abstract
This chapter discusses the stress-strain response of materials, how it is measured, and how it used to set performance expectations. It begins by describing the common tensile test and how it sheds light on the elastic design of structures as well as plasticity and fracture behaviors. It explains how engineering and true stress-strain curves differ, how one is used for design and the other for analyzing metal forming operations. It discusses the effect of holes, fillets, and radii on the distribution of stresses and the use of notch tensile testing to detect metallurgical embrittlement. The chapter also covers compression, shear, and torsion testing, the prediction of yielding, residual stress, and hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
... Engineering Stress-Strain Curve The tensile properties of a material are determined by applying a tensile load to a specimen and measuring the elongation or extension in a load frame, such as the one shown in Fig. 12.2 . The load can be converted to engineering stress, s , by dividing the load...
Abstract
The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear. Important tensile properties that can be determined by the tensile test include yield strength, ultimate tensile strength, ductility, resilience, and toughness. The chapter describes the effects of stress concentrations on ductile metals under cyclic loads. Other topics covered include combined stresses, yield criteria, and residual stresses of metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140299
EISBN: 978-1-62708-335-5
... rights reserved DOI: 10.31399/asm.tb.aacppa.t51140299 www.asminternational.org APPENDIX 2 Abbreviations and Symbols A area KIc plane strain fracture toughness, critical value of plane strain- AFS American Foundry Society intensity factor AlMMC aluminum metal matrix composite AMS Aerospace Material Speci...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200437
EISBN: 978-1-62708-354-6
... placed across the flask to help support the sand in the cope. Base Plate . . . A plate to which the pattern assemblies are attached and to which a flask is subsequently attached to form the mold container. Bath . . . Molten metal on the hearth of a furnace, in a crucible, or in a ladle. Batten...
1