Skip Nav Destination
Close Modal
Search Results for
standards and grades
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 522 Search Results for
standards and grades
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1995
Fig. 22-7 Comparison of standard HP grade, niobium-modified alloys, and micro-alloyed compositions—100,000 hour rupture lives
More
Image
Published: 01 December 1995
Fig. 20-1 Ranges of chromium and nickel in standard grades of heat-and corrosion-resistant castings
More
Image
Published: 01 December 2001
Fig. 37 Unit power consumption for free-machining and standard grades of carbon and alloy steels as a function of hardness
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060273
EISBN: 978-1-62708-355-3
... hardening steels; wrought, quenched and tempered 1986 288 524 76 Stainless steels, standard martensitic grades; wrought, heat treated 1896 275 414 60 Rhenium 1862 270 . . . . . . Ultrahigh strength steels; wrought, heat treated 1862 270 1172 170 Stainless steels, age hardenable...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000005
EISBN: 978-1-62708-312-6
... delubrication may contain greater than 0.03% C and hence would not meet the “L”-grade criterion. Other PM preferences within the standard ranges of composition are also related to the effects of respective constituents on powder production and powder compaction. The importance of adhering to relatively...
Abstract
This chapter provides information on the properties and behaviors of stainless steels and stainless steel powders. It begins with a review of alloy designation systems and grades by which stainless steels are defined. It then describes the composition, metallurgy, and engineering characteristics of austenitic, ferritic, martensitic, duplex, and precipitation hardening stainless steel powders and metal injection molding grades.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820115
EISBN: 978-1-62708-339-3
... (1200 °F). Grade Designations Martensitic stainless steels can be divided into standard SAE grades and nonstandard grades. Most of the nonstandard grades have been given UNS designations. Table 1 lists the compositions of both standard and representative nonstandard grades. Figure 1 shows...
Abstract
Martensitic stainless steels are essentially iron-chromium-carbon alloys that possess a body-centered tetragonal crystal structure (martensitic) in the hardened condition. Martensitic stainless steels are similar to plain carbon or low-alloy steels that are austenitized, hardened by quenching, and then tempered for increased ductility and toughness. This chapter provides a basic understanding of grade designations, properties, corrosion resistance, and general welding considerations of martensitic stainless steels. It also discusses the causes for hydrogen-induced cracking in martensitic stainless steels and describes sulfide stress corrosion resistance of type 410 weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440097
EISBN: 978-1-62708-262-4
... available. The UNS number consists of a single letter prefix followed by five numerals. The prefix letter G indicates standard grades of carbon or alloy steels, while the prefix letter H indicates standard grades that meet certain hardenability limits. The first four digits of the UNS designations...
Abstract
This chapter explains the definition of carbon steels and lists the Unified Numbering System designations and the compositions that are universally accepted by steel producers and fabricators. Compositions of higher hardenability carbon steels (higher manganese grades and/or boron treated steels) are also discussed, as well as those of free-machining carbon steels. Detailed heat treating procedures are presented for a representative group of carbon steels. The processes involved in tempering and austempering of carbon steels are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200298
EISBN: 978-1-62708-354-6
... are shown in Tables 22-3 and 22-4 . The standard grades, which are recognized by ASTM specifications, fall in a range from 0 to 68% nickel with 8 to 32% chromium and the balance primarily iron plus up to 2.5% silicon and 2% manganese. Proprietary alloys and others, which are now in the public domain...
Abstract
This chapter provides a detailed discussion on the definitions, alloy classification, alloy selection, mechanical properties, hot gas corrosion resistance, and formability of heat-resistant high alloy steels. In addition, the applications of cast heat-resistant alloys are also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.9781627083126
EISBN: 978-1-62708-312-6
Image
Published: 01 December 2000
Fig. 5.21 Metallographic standard for carburized, hardened, and tempered cases in grades A, B, and C gears. (a) Desired high carbon, carburized, hardened, and tempered martensitic case. No retained austenite. No surface oxidation. Acceptable for grade A. (b) Case structure 10% retained
More
Image
Published: 01 September 2005
Fig. 24 Metallographic standard for carburized, hardened, and tempered cases in grades A, B, and C gears. (a) Desired high carbon, carburized, hardened, and tempered martensitic case. No retained austenite. No surface oxidation. Acceptable for grade A. (b) Case structure 10% retained austenite
More
Image
Published: 01 December 2000
Fig. 5.22 Metallographic standard for case carbides in carburized, hardened, and tempered cases. (a) Desired case carbide distribution for grades A and B gears; 4% nital etch, dark field illumination. (b) Scattered carbides in grain boundaries, maximum acceptable for grade A. 4% nital etch
More
Image
Published: 01 December 2000
Fig. 5.23 Metallographic standards for carburized, hardened, and tempered core structure. (a) Desired low-carbon, tempered martensite, free from ferrite patches and with some transformation products. Acceptable for grade A. (b) Low-carbon, tempered martensite with maximum allowable
More
Image
Published: 01 September 2005
Fig. 25 Metallographic standards for carburized, hardened, and tempered core structure. (a) Desired low-carbon, tempered martensite, free from ferrite patches and with some transformation products. Acceptable for grade A. (b) Low-carbon, tempered martensite with maximum allowable
More
Image
Published: 01 September 2005
Fig. 5 Metallographic standards for nitrided case structure. (a) Desired nitrided case showing small amount of grain boundary nitride; acceptable for grade A. Dark field illumination. (b) Nitride case with some continuous grain boundary nitrides; maximum acceptable for grade A. Dark field
More
Image
Published: 01 December 2000
Fig. 6.4 Metallographic standards for nitrided case structure. (a) Desired nitrided case showing small amount of grain boundary nitride; acceptable for grade A. Dark field illumination. (b) Nitride case with some continuous grain boundary nitrides; maximum acceptable for grade A. Dark field
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170257
EISBN: 978-1-62708-297-6
... into intermediate-purity alloys ( Table 3 ) and ultrahigh-purity alloys ( Table 4 ). Figure 2 shows the effects of alloying on the properties and processing characteristics of the standard AISI ferritic stainless steels. Nominal chemical composition of representative Group I standard-grade 400-series ferritic...
Abstract
This article covers the metallurgy and properties of stainless steels. It provides composition information on all types of ferritic, austenitic, martensitic, duplex, and precipitation-hardening stainless steels, including proprietary and nonstandard grades, along with corresponding property and performance data. It also discusses the effect of various alloying elements on pitting, crevice corrosion, sensitization, stress-corrosion cracking, and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170242
EISBN: 978-1-62708-297-6
... Abstract This article provides an overview of austenitic manganese steels. It describes the standard composition ranges of commercial products and explains how various alloying elements affect mechanical properties, processing, and performance. The article also discusses special grades...
Abstract
This article provides an overview of austenitic manganese steels. It describes the standard composition ranges of commercial products and explains how various alloying elements affect mechanical properties, processing, and performance. The article also discusses special grades of manganese steels and the types of applications for which they have been developed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060291
EISBN: 978-1-62708-261-7
... by the American Iron and Steel Institute (AISI) numbering system, the Unified Numbering System (UNS), or the proprietary name of the alloy. The AISI system was developed in the 1930s for standard grades of wrought stainless steels and was based principally on production volumes. Of the two institutional numbering...
Abstract
Steels that resist corrosive attack from normal atmospheric exposure and contain a minimum of 10.5% Cr and 50% Fe are generally classified as stainless steels. Their special qualities lie in a chromium-rich oxide surface film that quickly regrows when damaged. This chapter discusses the classification, composition, properties, treatments, and applications of austenitic, ferritic, martensitic, duplex, precipitation-hardening, powder metallurgy, and cast stainless steels. It also reviews the history of stainless steels and provides information on alloy designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310095
EISBN: 978-1-62708-326-3
..., a boron-treated 1541 steel would be written as 15B41. Compositions for six standard grades of boron-treated carbon steels are listed in Table 4 . However, other grades of carbon steels are available as boron-treated grades, usually by special order. Carbon-manganese-boron steels are far less...
Abstract
This chapter describes the designations of carbon and low-alloy steels and their general characteristics in terms of their response to hardening and mechanical properties. The steels covered are low-carbon steels, higher manganese carbon steels, boron-treated carbon steels, H-steels, free-machining carbon steels, low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, and low-alloy silicon-manganese steels. The chapter provides information on residual elements, microalloying, grain refinement, mechanical properties, and grain size of these steels. In addition, the effects of free-machining additives are also discussed.
1