Skip Nav Destination
Close Modal
Search Results for
stacking sequence
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 151 Search Results for
stacking sequence
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Image
Published: 01 August 2005
Fig. 8.46 Tensile failure loads as functions of layup and stacking sequence of the composite laminate. Source: Ref 8.54
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
... of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion. dislocation mobility edge dislocations glide plane grain boundaries miscibility pinning...
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Image
Published: 01 August 2005
Fig. 8.37 Test data showing post-impact compression strength as a function of laminate stacking sequence. Source: Ref 8.43
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540357
EISBN: 978-1-62708-309-6
... fault. This type of internal surface defect occurs only in closely packed structures (such as fcc and hcp lattices), and is associated with the stacking sequence of close-packed planes. For example, consider the stacking of planes in both the fcc and hcp systems. In an fcc structure, closest-packed...
Abstract
Deformation within a crystal lattice is governed principally by the presence of dislocations, which are two-dimensional defects in the lattice structure. Slip from shear stress is the most common deformation mechanism within crystalline lattices of metallic materials, although deformation of crystal lattices can also occur by other processes such as twinning and, in special circumstances, by the migration of vacant lattice sites. This appendix describes the notation used to specify lattice planes and directions and discusses the mechanisms of slip and twinning as well as the effect of stacking faults.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
... affect PMC properties. Layup and stacking sequence Manufacturing process control Testing and data reduction procedures: These may not resemble the real situation. Scaling effect: Failure load prediction using material coupon test data is not compatible with actual failure load in full...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110219
EISBN: 978-1-62708-247-1
... Abstract This chapter describes three approaches for 3D hot-spot localization of thermally active defects by lock-in thermography (LIT). In the first section, phase-shift analysis for analyzing stacked die packages is performed. The second example employs defocusing sequences...
Abstract
This chapter describes three approaches for 3D hot-spot localization of thermally active defects by lock-in thermography (LIT). In the first section, phase-shift analysis for analyzing stacked die packages is performed. The second example employs defocusing sequences for the localization of resistive electrical shorts in 3D architectures, and the third operates in cross sectional LIT mode to investigate defects in the insulation liner of Through Silicon Vias. All three approaches allow for a precise localization of thermally active defects in all three spatial dimensions to guide subsequent high-resolution physical analyses.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310001
EISBN: 978-1-62708-326-3
... arrangements in grains and grain boundaries The other types of surface defects occur within crystals and are dependent on the crystalline structure. Surface defects within a crystal lattice can occur by: Stacking faults , where the stacking sequence of planes is not consistent in the lattice...
Abstract
The building block of all matter, including metals, is the atom. This chapter initially provides information on atomic bonding and the crystal structure of metals and alloys, followed by a description of three crystal lattice structures of metals: face-centered cubic, hexagonal close-packed, and body-centered cubic. It then describes the four main divisions of crystal defects, namely point defects, line defects, planar defects, and volume defects. The chapter provides information on grain boundaries of metals, processes involved in atomic diffusion, and key properties of a solid solution. It also explains the aspects of a phase diagram that shows what phase or phases are present in the alloy under conditions of thermal equilibrium. Finally, a discussion on the applications of equilibrium phase diagrams is presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
... tension in the y -direction) Symmetric Laminates and Laminate Notation As shown in Fig. 1 , the principal material directions within each ply of a laminate are denoted by an x 1 - x 2 axis system. Laminate stacking sequences can be easily described for composites composed of layers...
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060013
EISBN: 978-1-62708-261-7
... as the ductile-brittle transition temperature (DBTT). The DBTT varies from alloy to alloy, but the onset is associated with fewer active slip planes being available for deformation at low temperatures. Faults in the Stacking Sequence of Closest-Packed Planes Imagine racking up a set of billiards to play...
Abstract
This chapter introduces many of the key concepts on which metallurgy is based. It begins with an overview of the atomic nature of matter and the forces that link atoms together in crystal lattice structures. It discusses the types of imperfections (or defects) that occur in the crystal structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use of equilibrium phase diagrams, the role of enthalpy and Gibb’s free energy in chemical reactions, and a method for determining phase compositions along the solidus and liquidus lines.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240017
EISBN: 978-1-62708-251-8
..., as illustrated in Fig. 2.35 . In an fcc structure, the stacking sequence changes from the normal ABCABC to ABAB , which is the stacking sequence for the hcp structure. Passage of the second partial dislocation restores the normal ABCABC stacking sequence. These partial dislocations are often referred...
Abstract
In a perfect crystalline structure, there is an orderly repetition of the lattice in every direction in space. Real crystals contain a considerable number of imperfections, or defects, that affect their physical, chemical, mechanical, and electronic properties. Defects play an important role in processes such as deformation, annealing, precipitation, diffusion, and sintering. All defects and imperfections can be conveniently classified under four main divisions: point defects, line defects, planar defects, and volume defects. This chapter provides a detailed discussion on the causes, nature, and impact of these defects in metals. It also describes the mechanisms that cause plastic deformation in metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870421
EISBN: 978-1-62708-314-0
... follow a sequence of +θ/–θ. An example is a [30°/–30°] 4 laminate with a stacking sequence of [30°, –30°, 30°, –30°, 30°, –30°, 30°, –30°]. The subscript 4 indicates that the pattern is repeated four times. Cross-Ply Laminates In a cross-ply laminate, the plies are stacked in alternating layers...
Abstract
This chapter discusses some of the challenges associated with the analysis of composite structures. It begins with a review of lamina fundamentals and the stress-strain relationships in a single ply under various types of loads. It demonstrates the use of classical lamination theory, discusses the effects of interlaminar free-edge stresses, and explains how to predict the failure of composites using stress and strain criteria as well as the Azzi-Tsai-Hill maximum work theory and the Tsai-Wu failure criterion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700135
EISBN: 978-1-62708-279-2
... Faults Atoms in metal crystals are arranged in close-packed planes stacked in a periodic sequence. Crystal structures are generated by the stacking of these close-packed planes on top of each other. A stacking fault exists when there is an interruption in the stacking sequence of the close-packed...
Abstract
This chapter briefly discusses the characteristics of mechanical twins and stacking faults in close-packed planes. It provides an overview of the composition, microstructures, thermodynamics, processing, deformation mechanism, mechanical properties, formability, and special attributes of twinning-induced plasticity steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420363
EISBN: 978-1-62708-310-2
... of the unit cell) is 0.74 for the fcc structure. This is the densest packing that can be obtained. The fcc structure is the most efficient, with 12 nearest atom neighbors (also referred to as the coordination number, CN), that is, the fcc structure has a CN = 12. As shown in Fig. A.11 , the stacking sequence...
Abstract
This appendix provides a detailed overview of the crystal structure of metals. It describes primary bonding mechanisms, space lattices and crystal systems, unit cell parameters, slip systems, and crystallographic planes and directions as well as plastic deformation mechanisms, crystalline imperfections, and the formation of surface or planar defects. It also discusses the use of X-ray diffraction for determining crystal structure.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780047
EISBN: 978-1-62708-268-6
... described previously. One is that a tire fragment strikes a wheel well hydraulic line with sufficient force to rupture it, and the other is that a wheel well hydraulic line is struck at all. Figure 6.3 shows these stacked INHIBIT events. Each INHIBIT gate ellipse assigns a probably to the event beneath...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240003
EISBN: 978-1-62708-251-8
..., “Crystalline System Calculations,” in this book. As shown in Fig. 1.12 , the stacking sequence for the fcc structure is ABCABC . The fcc structure is found in many important metals such as aluminum, copper, and nickel. 1.3.3 Hexagonal Close-Packed System The atoms in the hexagonal close-packed (hcp...
Abstract
Bonding in solids may be classified as either primary or secondary bonding. Methods of primary bonding include the metallic, ionic, and covalent bonds. This chapter discusses and provides a comparison of the properties of these bonds. This is followed by a discussion on crystalline structure, providing information on space lattices and crystal systems, hexagonal close-packed systems, and face-centered and body-centered cubic systems. The chapter then covers slip systems and closes with a brief section on allotropic transformations that occur at a constant temperature during either heating or cooling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410215
EISBN: 978-1-62708-280-8
... plated. Figure 8.4 illustrates the concept of multiple sprues for larger wheels. Fig. 8.4 Multiple sprues concept for large wheels 8.1.5 Feeding and Solidification Analysis Computer solidification simulation is a powerful tool that offers an insight into the sequence...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860095
EISBN: 978-1-62708-338-6
... fixture to identify the failure mechanisms and the strength and stiffness of large-scale fiber undulations. There were several ply orientations and stacking sequences. Jensen et al. found that the compressive properties and failure modes of the filament-wound specimens were degraded in the same manner...
Abstract
The objective of mechanical testing of an engineered material is to provide data necessary for the analysis, design, and fabrication of structural components using the material. The testing of filament-wound composite materials offers unique challenges because of the special characteristics of composites. This chapter describes suitable static mechanical test techniques for characterizing laminated composite materials. The approach is to provide recommended techniques, based on consensus opinions of fabricators and users of filament-wound composites, and to survey available techniques that have been used successfully in the field. The chapter describes the effects of various factors on the properties of composite constituents, including fibers, resins, and unidirectional plies. Some aspects of specimen selection are also described. The chapter provides information on pressure bottles and tubular parts that have been developed as standard test specimens for combined load testing of composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2023
DOI: 10.31399/asm.tb.ceeg.t59370187
EISBN: 978-1-62708-447-5
..., operation sequence, advantages, and applications of LPPM, LPSPM, and counter-pressure casting. casting machines counter-pressure casting low-pressure permanent mold casting low-pressure semipermanent mold casting 10.1 Low-Pressure Permanent and Semipermanent Mold Casting THE LOW-PRESSURE...
Abstract
The low-pressure permanent molding (LPPM) and semipermanent molding (LPSPM) processes are versatile, and they meet the quality requirements of a variety of high-integrity, large-sized, and thin-walled aluminum castings for various industries. This chapter presents the major features, operation sequence, advantages, and applications of LPPM, LPSPM, and counter-pressure casting.
1